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ABSTRACT

\

The bounded rationality constraint sets an upper limit on the rate with which

- decisionmakers can process information satisfactorily. This rate is studied both

experimentally and analytically. A simple computer game for a single decisionmaker was
used in which subjects were asked to find the smallest of a set of ratios present on the
screen for a limited amount of time. Both the amount of time (twelve values) and the
number of ratios (two values) were varied A Gompertz curve is used to model the
experimental results and establish the existence of a time threshold beyond which
performance decreased significantly. An information theoretic model of the cognitive
workload is used to estimate the workload associated with the tasks. The time threshold T*
and the cognitive workload lead to a value for the bounded rationality constraint for each
subject and each number of ratios. The distribution of the bounded rationality constraint
across subjects for each number of ratios is found to be normal. Also, the bounded
rationality of each subject as the number of ratios is changed does not vary significantly.
These results may be used in the design of multi-person experiments and eventually in the
methodology for organization design. First, a single value of the bounded rationality
constraint for each decisionmaker would be needed for similar types of tasks. Second,

Ladiad I

since the distribution of the bounded rationality constraint across subjects appears to be ~°F i
I . : o
normal, establishing the threshold level for a sample of decisionmakers could be sufficient g o
. . - o : R . i
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CHAPTER I

INTRODUCTION

1.1 OVERVIEW

Performance of human decisionmakers under time constraints is a critical measure in
information processing and decisionmaking organizations, especially when the time
constraint is very severe as for example in tactical military organizations. One of the major
determinants of performance of individuals under time constraint is their ability to increase
their rate of processing as the rate of information input to the system increases. The
hypothesis is that human decisionmakers may not increase their processing rate
indefinitely. March (1978), developed the idea that decisionmakers are limited by the
"cognitive capabilities of human beings," and introduced the concept of bounded
rationality. Itis assumed that as the rate of input information increases, subjects reach a
critical rate of information processing after which performance decreases drastically in an
unpredictable manner. This rate, identified as the bounded rationality constraint , has been
related to the cognitive workload associated with the different tasks to be performed as well
as the input rate of information using information theory (Levis,1984).

1.2 STATEMENT OF THE PROBLEM

No experimental work has been done to study the bounded rationality constraint of
human decisionmakers. The purpose of this thesis is to confirm experimentally the
existence of a maximum information processing rate and investigate its stability both across
tasks aud across people. Because the bounded rationality constraint is defined as an
information processing rate, two critical values are involved: the task input interarrival rate
and the amount of information processing required to perform the task. Therefore, both
experimental results and analytica! results are required. First, an experiment was designed
and run under the direction of Dr. Jeff T. Casey at the Laboratory for Information and
Decision Sytems. The results were analyzed to estimate the maximum task interarrival rate
before the decisionmakers’ performance decreased significantly. Then, the amount of
information processing required to perform the task of the experiment was computed using

N-dimensional information theory.

o '::':‘n!‘g::
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The hypotheses which are posed are the following. First, the bounded rationality
constraint exists and may be identified experimentally by a sharp decrease in performance. - SNKN
Second, when considering similar tasks, the maximum processing rate should be stable
within an individual. Finally, it is hypothesized that the bounded rationality constraint is Wl
reasonably stable across well trained subjects. Y.,

1.3 THE THESIS IN OUTLINE Vi,

The second chapter of this thesis, Chapter II , presents an overview of workload and eyt
the general analytical models that are used to analyze and model the experiment. The sl
experimental procedures are described and explained in Chapter III. Chapter IV analyzes N
the obtained results and the first conclusion is drawn to affirm the existence of the bounded Y
rationality constraint. Postulations are made about the stability of the bounded rationality '

constraint both across similar tasks and across decisionmakers. Chapter V describes the !
different algorithms that were chosen as models of the subjects' decision process, and
attests the models' plausibility by comparing the performance of the algorithms' Mt
simulations and the subjects’ performance. In Chapter VI, the methodology and -
assumptions used to compute the workload of each algorithm are detailed, and the Pty
numerical values are evaluated for each algorithm. Finally in Chapter VII, the bounded
rationality constraint is derived for each subject for two different tasks and the hypotheses ::‘4‘5'
are tested. The hounded rationality does not only exist, but is both stable across similar KA
tasks and across subjects. e
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CHAPTER II o

THE ANALYTICAL TOOLS -

2.1 WORKLOAD N
At

The analytical framework, used for modeling the simplified air-defense tasks =2
presented in this thesis, is that of n-dimensional information theory. It is build upon two
primary quantities: entropy and transmission. Entropy is the fundamental measure of 10
information and uncertainty : given a variable x, an element of the alphabet X, occurring Rt
with probability p(x), the entropy of x, H(x), is defined as follows:

HO) =~ ), p(x) log p(x) @) s
X (N

Entropy is defined in bits when the base of the logarithm is two. Entropy is also defined as vy
the average information or uncertainty of x, where information does not refer to the content AT
of the variable x, but rather to the average amount by which the knowledge of x reduces the ®
uncertainty about it. noty

Transmisison T(x:y) is also known as mutual information. The transmission Wy,
between variables x and y, elements of the alphabets X and Y, given p(x), p(y), and p(xly) o
(the conditional probability of x, given the value of y), is defined as follows: pne

T(x:y) = H(x) - Hy(x) 2.2) :::2;::

where AN

H(x)=- zy', p(y) g p(xly) log p(xly) 2.3) ;.':«:*

is the conditional uncertainty in the variable x, given full knowledge of the value of the r\‘,
variable y. Transmission may be interpreted as the amount by which knowledge of x
reduces the uncertainty in y, or vice versa, as it is a symmetric quantity in x and y. .'.:. o

vy 0
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McGill (1954) generalized this basic two-variable input-output theory to N
dimensions by extending Eq. (2.2):

T(x X oiXy) = 2y HX() - HX]:Xg000rXy) 2.4) Ry

The N-dimensional mutual information measures the total constraint or
interrelatedness holding among all N variables of a system. Vi

The workload surrogate, denoted by G, is defined as being the total processing
activity of the system, i.e., the sum of the entropy of all the variables in the system.

N
G=2, Hw) (2.5) '

i=1 .

Using the Partition Law of Information, noted PLI (Conant, 1976), the total activity “’;’Z
G may be decomposed into components that characterize how information may be -
transformed as it is processed by a system. For a system with N-1 internal variables, w,
through wy_;, and an output variable, y, also called wy, the law states A

N
2 H(w) =T(x:y) + Ty(x:wl,wz,. - ,wm) + T(wlzwz:...:wN_lzy) Bty
i=1

+H (w,,w,,...,W_,,y) 2.6) e

and is easily derived using information theoretic identities. G

The left-hand side of Eq. (2.6) represents the total activity, G, of the system. The taet
other terms of equation may be interpreted in the following way. The first term, T(x:y), is W
called throughput and is designated G;. It measures the amount by which the output of the R
system is related to the input. The second quantity, Ty(x:wl,wz,...,wN_l), .'4‘.{5

Ty(x:wl,w2,...,wN_,) = T(x:wq,Wa,...,WN_1,Y) - T(xy) 2.7 : s
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is called blockage and is designated Gp. Blockage may be thought of as the amount of 2 ’;,_
information in the input to the system that is not included in the outpout. The third term, XN

transmission of the system, i.e., the amount by which all of the internal variables in the X
system constrain each other. The last term, Hyx(wy,W3,...,WN.1,Y), designated by Gy,
represents the uncertainty that remains in the system variables when the input is completely
known. Although this information is called 'noise’ since it originates within the system, it b,
is not necessarily adverse, as the word usually connotes; the decisionmaker may introduce ek
information previously held to ease the decision process. The partition law may be b
abbreviated: W

G =Gy + Gp +G¢ + Gy (2.8) oy
2.2 THE DECISION-MAKING MODEL e
2.2.1 Overview of the Model QS

Whereas in classical decision theory the decisionmaking organization has an O

y unlimited amount of time in making the decision, in tactical battle situations, time pressure wh
: is one of the most critical features of the decisionmaking process. In the first case, the higk
! decisionmaking organization has a good knowledge of all the actions that may be taken,
' and reasonable estimation of the consequences or costs of each action. In the latter case, as g
mentioned in the decision-analysis literature, the ability of the decisionmaking organization e

to analyze and process the input messages, formulate actions, and foresee consequences is :;“.*

limited. .v"'.t

s 2.2.2 The Decision-Making Organization Model hy

The basic model of the memoryless decisionmaker with bounded rationality is a two- SN
stage process illustrated in Figure 3.1.(Boettcher, 1981). Specifically, it is assumed that '§ :
the two stages are (a) situation assessment (SA), and (b) response selection (RS). The v
decisionmaker recieves an input symbol x; from the environment with average interarrival "
time T . The Situation Assessment stage (SA) of the decision process contains algorithms !
that process the incoming signals x; to obtain the assessed situation z. It consists of a set B
) - of U algorithms (deterministic or not) that are capable of producing some situation

1) e o W s n
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assessment z of the set Z. The choice of algorithms is achieved through specification of the
internal variable u in accordance with the situation assessment strategy p(u), or p(ulx), if a
decision aid (e.g., a preprocessor) is present. The RS stage contains algorithms that
produce outputs Yj of the set Y in response to the situation assessment z and the command
inputs. The selection of the algorithm is made according to the response selection strategy
p(viz). The two strategies, when taken together, constitute the internal decision strategy of
the decisionmaker. The structure of this model has been extended to include interactions
with other organization members, as well as memory, but the extended model goes beyond
the scope of this thesis. The assumptions under which the model was used in this work are
first that the model is memoryless (memory was investigated by Hall, 1982, and Bejjani,
1985), second, there is no preprocessor (decision aids and preprocessors were studied by
Chyen, 1984).

f1(x) h (@)
u v
X z y
- fg(x) / — 5(2) >

fyx) \a hy(2)

SA RS

Figure 2.1 Two-Stage Decisionmaking Model
2.2.3 The Task Model

It is assumed that the DM receives signals x; € X from the source with interarrival
time 1. These inputs are assumed to take values from a finite set called the input alphabet
and noted X. The cardinal of the set X is noted n. Each element x; of the set X, has a
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probability p;j of being emitted and is assumed to be statistically independent of the other !
‘«‘. 3
inputs. Also the set X is exhaustive, that is: L

2P =1 2.9) o
i

The decisionmaker's task is defined as processing the input symbols x; to produce ~
output symbols Yj of a finite set Y. Such a task implies that the organization designer b
knows a priori the set of desired responses Y and, furthermore, has a function or table L(x)
that associates a desired response or a set of desired responses yj, elements of Y, to each .h;.,!"
input xj of X. (This implication is used later on in this work to estimate the performance of
the subjects and is therefore of interest.) ol

2.3 THE BOUNDED RATIONALITY CONSTRAINT f.:??‘«‘

The first chapter of this thesis introduced the assumption that the processing rate of ::';
human decisionmakers is bounded. The concept of bounded rationality constraint has been .v;H::f
studied both in experimental psychology and in the domain of C2. iR

2.3.1 Experimental Psychology .u;:gn,

In the experimental psychology and behavioral analysis literature, one may find two :ui::
different approaches which may be related to the concept of human bounded rationality: the ‘
Yerkes-Dodson 'law' and decisionmaking under time pressure. (Casey, 1987 a, c). i

Considerable experimental psychological work has examined the influence of arousal oy
on performance in various types of tasks. Figure 2.2 shows the relationship between °®
arousal and performance called the Yerkes-Dodson 'law'. This relation is shown when it
arousal is varied over an extremely wide range. Arousal is influenced by a variety of "é":*.
factors including cognitive workload. At very low arousal, performance is low due to :'c‘
boredom and vigilance limitations. At very high arousal, performance is also low, but it is
then due to stress and sensory overload. In a well designed organization, all o
decisionmakers should be operating near the top of the curve. (Casey et al., 1987). !
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Figure 2.2 : The Yerkes- Dodson Law.

Decisonmaking under time pressure, however, has been given very little attention .
A few studies in the behavioral decision litterature have been made (Ben et al.,1981;
Wright, 1974; Wright et al., 1977). The general conclusion of these works is that when
under time pressure, people process only a portion of the information that they would
normally process. Further, they filter the process so that the information that is processed
is more important than that which is not processed. Such conclusions may have a
significant impact when modeling tasks performed under time pressure. In Chapter V of
this thesis, theses conclusions are used as assumptions when modeling the task of the
experiment which was performed under time pressure.

2.3.2 The C2 Approach

Time pressure is one of the most significant features of decision-making in the
context of tactical battle management, and significant research has been made in the domain
of C2 to study the effect of short action time on the decisionmaking process and on
performance, i.e., Cothier (1984) . The concept of bounded rationality in communication
theory will be presented before that of information theory to contrast the two different
approaches.

In communication theory, the concept of channel capacity defines the maximum
transmission between input and output that the particular channel can provide. This
constraint alone is not adequate to describe the limitations of a decisionmaker. Some
decision tasks such as decision processes with binary outcome may require a lot of internal
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processing, but very little input-output transmission.

In the information theoretic model, it is assumed that simple information processing
tasks are performed with little error when both the rate of information processing imposed
by the input interarrival rate is low and the decisionmaker is not bored. As the input
interarrival rate increases, the decisionmaker increases his information processing rate. If
the information rate increases further still, a point is reached when the decisionmaker may
not increase their processing rate anymore: the decisionmaker is overloaded and his
performance decreases significantly. The degradation of performance and the
decisionmaker's coping strategies are not statistically predictable and may take many forms.
Examples of coping strategies may be ignoring entire inputs, simplifying the algorithms
used to give less accurate responses, etc..(Miller, 1969)

The notion that the rationality of a human decisionmaker is bounded has been
modeled as a constraint on the total activity G (Levis, 1984 ). The specific form for the
constraint for the memoryless and deterministic model has been suggested by the empirical

relation

t=¢ + CZGt (210)
where t is the average reaction time, i.e., the time between the arrival of the input and the
generation of an output y, and G is the throughput rate computed using the Partition Law
of Information (see equation 2.8). It is assumed that the decisionmaker must process his

inputs at a rate that is at least equal to the rate with which inputs arrive. The latter has been
modeled by 7, the mean symbol interarrival time:

t=c +¢cGest (2.11)
The modeling assumptions in this work are that
c1/cy =Gy + G+ G, 2.12)

and that ¢, does not depend on p(x). Then, the bounded rationality constraint takes the

form
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1
G=Gl+Gb+Gn+GcS-c:1:=F1: (2.13)

where F can be considered as a rate of total activity and is measured in bits per second.
Equation 2.13 may be rewritten using the DM's average processing time t as

)

For values of t sufficiently small, noted Tp;,, the time t required to process the task with

acceptable accuracy will equal the lapse of time between two inputs, and inequality 2.13
will become an equality described as :

G =Fpnamin (2.15)

t per input = Tmin (2.16)

and Fp,,, is assumed to be the maximum information processing rate, and t the minimum
time required to perform the task with the desired accuracy.

The bounded rationality constraint assumes that if the processing rate Fp,,y is
exceeded, performance will drop significantly in an unpredictable manner. Equation 2.15
may be rewritten as:

=G/ tper input (2.17)

where the different quantities have already been described above.

From equations 2.15 and 2.17, it is apparent that for the purpose of investigating
the behaviour of the bounded rationality constraint, the maximum information processing
rate is a function of three different parameters: the total activity required to perform the task,
noted G, the input signal interarrival time, noted t, and the minimum time required to
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process the information and perform the task with the desired level of accuracy, noted t.
These conclusions have a significant impact when considering the design of experiments
which will be described in the next chapter.
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CHAPTER III ey
EXPERIMENTAL PROCEDURES e

The existence and the behaviour of the bounded rationality constraint are tested o)
and analyzed using experimental results. This chapter describes the experimental setup and et
procedures which were designed and run under the direction of Dr. Jeff T. Casey at the =
Laboratory for Information and Decision Systems. First, the relevant parameters are %""
characterized in section 3.1. Then, the experimental procedures are reviewed in section o".'o -
3.2. Finally, the purpose of the task constraints and experimental setup are explained in Lk
sections 3.3 and 3.4. W

AxN

3.1 THE PARAMETER TO MANIPULATE e

The information processing rate F is described in Chapter 2 as being a mathematical - RO
function of three different parameters, the cognitive workload required to perform the task, e 7
the minimum time required to perform the task for a given level of accuracy, and the input - R
signal interarrival time. (See equations 2.15 and 2.17). When considering the maximum VR
processing rate noted Fp,,, , these three parameters may be reduced to two, since the Y,
assumption is that when Fp,,5, is reached, the input interarrival rate is equal to the minimum )
processing rate. As a result, the parameter "time" may be considered as the time allotted to XX
perform the task, also called the window of opportunity. Therefore, two different bt
approaches may be used to study Fp,,,. One may manipulate either the time allotted to e
perform the task (t), or the cognitive workload (G) while keeping the other parameter
constant. lopiicy

The effect of the bounded rationality on performance as a function of workload or !
time allotted per trial has been described as a step function (see Figures 3.1 and 3.2). g}'.o'*
Performance is stable until the maximum amount of information processing is reached. A
Then performance drops at or under chance level. The step function represents an s
instantaneous decrease in performance. It is assumed however, that human decisionmakers
will not behave in such a rigid way; when F,,, is reached, performance will decrease
significantly but more smoothly than the step function.
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Workload (bits)

Figure 3.1 Performance as a Function of Workload

o

The first approach consists of varying the amount of cognitive workload while #-:,:

) keeping the time allotted to perform the tasks constant. For a given t, the critical cognitive ""
. workload G* associated to Fy,, is measured experimentally as the workload after which :;&:j
;’ performance decreases significantly. The second approach consists of varying the time ;,E:;:
- allotted to perform the task while keeping the workload constant. The methodology is the ii':jf
same as for the first case, but instead of using multiple tasks only one task is used and the b

? time allotted to perform the task is varied. For a given task, the critical time t* associated "::':;
with F, 4, is measured experimentally. The total activity G, associated with the task is 'EE.:'::.?

computed analytically using information theory.

35 40

20 25 30
Interarrival Time (sec)

Figure 3.2 Performance as a Function of Interarrival Time

The manipulation of the task processing time is simpler to monitor and control
under experimental conditions than the manipulation of workload. In particular, time is a
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continuous variable whereas the workload is not continuous and needs to be assessed .‘j::
analytically. Therefore, the time allotted per trial is the parameter which was varied. - W
, 3
3.2 EXPERIMENTAL PROCEDURE ::5;
.:.:
This work is only the first in a series of experiments, therefore the simplest decision i
" making organization was simulated: the organization was reduced to a single decision ‘N
": maker. Since little was known about the experimental study of bounded rationality, the i
2 task was set so that the factors which were affecting the subjects' performance could be .‘;‘
monitored as precisely as possible. The task was also chosen so that the subjects could "'
become 'well trained experts' with reasonable amount of training, thereby satisfying the Mo
requirement that the decisionmakers' performance did not benefit from the learning effect ::‘::5
“l during the experiment. The experiment was designed to satisfy both the goals and ":‘:’_
K constraints which were just mentioned and may therefore seem very basic. :
2
f,;:- This section first describes the experimental setup, then the manipulation of .‘
il‘: parameters, the organization of trials, the practice sessions and finally the subjects are : E":
i characterized. i
P :::f'
R 3.2.1 Description of the Setup i
;
i The experiment consisted of a highly simplified tactical air defense task . It was run I
y on a Compaq Deskpro Model 2 equipped with an 8087 math coprocessor, monochrome o
'; graphics card (640 X 200 pixels), 640K of memory, and monochrome monitor. The |.$
o experiment was programmed in Turbo Pascal version 3.01A. The operating system was ? '
| MS-DOS version 2.11. It was also run on an IBM PC AT with the 80287 math x
B coprocessor and with 640K of memory. None of the high resolution graphics capabilities .
‘:»(( of the AT were used so that the experiment be portable to a wide variety of PC compatible Y
:: machines.
“ The computer screen shown in Figure 3.3 consists of three different parts: A large N
‘: circle, a small circle and a rectangular box. The large circle represents a radar screen. The N
‘__"_.; small circle represents the clock which shows the time allotted for the trial as well as the ft:
< amount of time left to perform the task. The rectangular box left of the screen and full of .
B 'domino ' shaped rectangles, shows the number of ratios used for the given trial, (4 in this R
2 o
i "
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example) and the number of ratios still to be processed (2 in this case). The keyboard was
used to enter the subjects' responses.

The experiment consisted of blocks of trials. A trial consisted of either four or
seven threats that were to be processed by the decisionmaker within the allotted time shown
by the clock. Within each block of trials, the number of ratios was constant and the time
allotted per trial was varied in alternating descending and ascending order. Each block of
trials was seperated by a longer pause and flashing to indicate that the number of ratios was

changing.

For each threat two pieces of information were presented as a ratio of two
two-digit integers: relative speed and relative distance from the center of the screen. The
distance was in the numerator and the speed in the denominator. Therefore, each ratio
represented the time it would take the ratio to reach the center of the screen. The subject's
task was to select the ratio which would arrive first at the center of the circle in the absence
of interception. The task can be interpreted as one of selecting the minimum ratio.

DS o =
sp 1
77
19

Figure 3.3 The Screen Display Used in the Experiment

For each trial, only two ratios were identifiable and present on the radar screen at
the same time. The other ratios were shown on the side of the screen by the 'domino’

shaped rectangles. Such a procedure forced the DM's to process ratios in pairs.
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The ratios appeared only on the vertical or horizontal diameter of the radar screen,
and the physical distance of each ratio from the center was proportional to the distance of
the ratio as indicated by the numerator. Thus ratios appeared in one of four regions: left,
right, above, or below the center. Each ratio was randomly assigned to one of these four
regions, subject to the constraint that no two ratios appeared in the same region at the same
time. For each pair of ratios in a given trial, the subject indicated his or her choice by
pressing one of four arrow keys corresponding to the direction of the ratio from the radar
screen's center. The ratio chosen as smallest was retained on the radar screen, the other
vanished, and the next ratio to be processed was taken from the small rectangle’s area and
placed on the radar screen. This procedure was repeated until all ratios of the trial had been
examined. Row(s) of small rectangles to the left of the radar screen indicated the total
number of ratios for the current trial and the number yet to be examined (see Figure 3.3).
Each time a new ratio appeared on the radar screen, one of the rectangles turned grey and
the numbers within that rectangle disappeared. The subject could not give a final answer
until all the ratios had been examined, (three comparisons for four ratios and six for seven).
The arrow keys were located on the numeric keypad of the keyboard and were arranged
isomorphically with the four regions of the radar screen.

Performance feedback was provided at the end of the trial. When a trial was
finished on time, only one ratio remained on the screen at the end of the trial. If this ratio
was in fact the smallest, it "flashed"” several times to indicate a correct response. If this
ratio was not the smallest, a low-pitched tone signalled the error. This tone (which subjects
reported to be particularly obnoxious) was used to discourage subjects to use guessing as a
strategy. When a trial was not finished on time, the screen vanished so the subject knew
he had not answered within the allotted time.

3.2.2 Manipulation of Task Interarrival Time

In usual information theoretic setups, it is assumed that the inputs are emitted by
one or many source(s) at a mean symbol interarrival time noted T. In this experiment, to
test the existence of the bounded rationality constraint, the average interarrival time is not
held constant, but is varied. However for easier control of the experimental parameters, the
time allotted to perform the task (noted t) is monitored, not the interarrival time.
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The amount of time allotted for each trial was shown by the fixed clock hand (see
Figure 3.3). A moving second hand (running clockwise from 12 o'clock) indicated
elapsed time within a trial. A 1.5 second pause prior to the start of each trial allowed
subjects to see how much time was allotted. The fixed hand flashed during this interval.
Time allotted per trial was varied in alternating descending and ascending series.

One of the questions which were to be answered by this experiment related to the
stability of Fay across tasks, if it could be shown that Fp,,, existed. It was decided to
choose two different numbers of ratios to investigate this issue. Therefore one of the
questions was

?
G4 _ G(N (G.1)
*(4)  t%(7)

This issue raised another question: When considering the measurements of time allotted
per trial, should the time allotted per trial be considered or should the average rime allotted
per comparison for each trial be considered?

One of the hypotheses was that because of the task setup which only allowed the
subjects to consider two ratios at the same time, the cognitive workload required to process
the four ratios was approximately twice that required to process trials of seven ratios. In
one case three comparisons were requized whereas in the other six comparisons were
required, and it was assumed that the same algorithmic structure was repeated for each
comparison. Equation 3.2 decomposes the workload for one comparison into the internal
variables, whereas equation 3.3 shows it for two comparisons.

k
G =H(x)) + 2, H(wj) + H (yp) (3.2)
i=1
k 2k+1
Gy =H(xp) + 2, Hwp) + 2, H(w;) +H (y,) (3.3)
i=1 i=k+l

where x1 is the input variable and y, the output variable for one comparison, and x; is the
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input variable and y, the output variable for two comparisons, and there are k internal i
variables noted wj for each comparison. -

Assuming that the workload per comparison was approximately the same for four
and for seven ratios, if it were proved experimentally that the minimum average time t,'!:o:f
allotted per comparison was not significantly different for four and for seven ratios, then 2
Fpax for both numbers of ratios should be assumed to be not significantly different. R
Therefore, it was decided that the parameter which should be monitored was the average 0 ,,ﬁ:
time allotted per comparison which will be noted T, rather than the time allotted per trial A,
which was noted t. T may be expressed as a function of the number of comparisons m
within a given trial as follows: NG

T= t/m = t/nl 3.4) e

where n is the number of ratios. .

To study the variations between trials of three and trials of six comparisons, the . :ﬁ??
average time per comparison was set to be the same for both types of trials. ( Assuming
Frax €xists, the time threshold associated with Fp,,x would be derived from the
experimental results, and noted T*; for three comparisons and T*¢ for six.) AN

The experiment was also constructed to minimize the influence on performance of ety
time required for non-cognitive (i.e., perceptual and motor) activity. A trial consisted of a Wt
set of either three or six comparisons. For a set of three comparisons, the time allotted per 3l
-7 oted t, ranged from 2.25 to 10.5 seconds. For a set of six comparisons, t ranged Pl

14.5 to 21 seconds . Thus the average time per comparison, noted T, was varied from
0.75 to . .5 seconds in 0.25 seconds increments for both conditions and 12 different values XK
of T were recorded. Since even the minimum average time per comparison of 0.75
seconds allowed ample time for eye movements, perception, and motor response, it could
be assumed that the major limiting factor on the performance of the subjects was the L
bounded rationality constraint Fpax. A

5

3.2.3 Organization of Trials o

The experiment consisted of blocks of twenty four trials within which the number Y,
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of ratios was kept constant. A block of trials consisted of a descending series over the 12
values of t, followed by an ascending series. Such an alternation between ascending and
descending series were aimed at smoothing out the anchoring effect of either only going
from minimum to maximum or only going from maximum to minimum. After a block was
over, the number of ratios was changed for the subsequent block. There was a 2.5 sec.
pause between blocks, during which time, the large rectangle to the left of the radar screen
(see Figure 3.3) flashed to indicate the impending change in number of ratios. The pause
was aimed not only at showing to the subjects what the next number of ratios would be,
but also at allowing to bring the tension down a little.

For each subject, the full experiment consisted of eight blocks of trials for both
numbers of comparisons. The number of comparisons changed at the end of each block.
(It was considered that the small differences between the difficulty of different trials were to
even out when considering blocks of twenty four trials). The subject's response was
recorded and mapped with the expected solution. Immediate feedback showed the subject
whether the answer was correct or not. Such a method satisfied the subject’s curiosity
about the accuracy of his previous decision. It also allowed the experimenter to estimate the
subject’s overall performance and ability to cope with time pressure.

The goal was to study the subjects' degradation of performance, therefore it was
important to make sure that the range of time intervals for which the subjects were tested
was large enough so that both a stable performance and a degradation of performance could
be observed. The subjects had to be tested both over time intervals that were large enough
so that their performance was close to optimum, and also small enough so that their
performance be below chance level.

By observing the subject run one session of the experiment, it could often be
estimated if the experiment was well calibrated for the particular subject, i.e., if the time
window used to test the subject was well chosen. For some of the subjects the experiment
was run over larger time intervals because preliminary analysis of their data showed that the
time window used was not large enough to gather all the relevant information. Since an
inappropriate experimental setup was not always spotted on time, subjects for whom the
experiment was not run properly were asked to come for extra sessions. As a result, for
some subjects, more data has been collected.
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For the subjects who only came for the scheduled sessions, the total duration of the 'SE::E:
experiment was approximately 2.5 hours, divided in three sessions: eight blocks of ) ‘:;:g:-
twenty-four trials were completed in each session and subjects typically participated in no oty
more than one session per day. To limit fatigue, each session was seperated into four '.::.:::'
ten-minute subsessions between which the subjects could take a brake. This was to ailow .:»:;;,E'
them to relax and have good attention span during the short subsessions. Prior to each B
experimental session, subjects were given a brief (three to five minute) "warmup" period e
during which no data were recorded. :::::E:
s
3.2.4 Practice Session ':::ﬁ
C3
Subjects received a 30 minute practice session prior to the actual experiment. This ::‘:}.»é‘
session consisted of six blocks of trials over T for each number of ratios. For the practice .:3%3:
session, T was varied from 1 to 5 sec. per comparison in 0.5 sec. increments. Informal :::2.%3
discussion with subjects indicated that most felt their performance would not improve 'i"'
substantially with additional practice. Practice was important because the subjects were not l:ifigf
supposed to improve their performance as the experiment was run; the analytical tools - .Ef: ‘.,
developed by Boettcher et al. assume that the subjects are both well trained and qualified to f:;:;':_’
perform the task. The practice session was also useful in getting some feedback from the ,,;
subjects. A few subjects decided not to go on with the experiment, whereas some were ’:}E{‘:
advised not to participate in the study. The few subjects who were asked not to participate g.::::;,
were people who were not familiar at all with approximation or rounding-off procedures :z‘f:;!:
necessary for such a task. They could not meet one of the requirements necessary to use o
information theory when applied to decision making or decisionmaking organizations: well :::::E:‘
trained and qualified decsionmakers. Except for those few special cases, the practice data o::?:::'
were not analyzed. ' :: 3

]

R
3.2.5 Subjects \ ‘.::
A
Twenty-five subjects ran the experiment to its full extent, since one subject was ;{; :
eliminated from the sample. Almost three quarters of the subjects (nineteen) were present ',_.‘
or former MIT students (both graduates and undergraduates), the others were MIT s‘;:::'::
employees or students' friends. The large number of MIT students is not inappropriate : ::::::::
since MIT students should be qualified to perform the task and, as mentioned above, the ':::’?
subjects should satisfy this requirement. _ _,“
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3.3 PURPOSE OF VARYING THE NUMBER OF RATIOS .

It was assumed in section 3.2.2 that the amount of workload per comparison was ’.05?.':
approximately the same for trials of four and seven ratios. However, the effect of ‘,.',,.‘
manipulating the number of ratios was of some intrinsic interest, because of implications
for how subjects manage their time. Effective time management is more critical for seven ”'ata-‘-;
than for four ratios, while "overhead" or "start-up" time is more critical for four ratios than

for seven. e

Therefore, if the value of the subjects' threshold (assuming it exists) was not N
significantly affected by changes in the number of ratios, it could be established that, to §
some degree, the bounded rationality constraint is stable across tasks. If, however, i
instability were found for such a minor task change, there would be no need to go further.

Subjects knew before the start of each trial how much time, t, was allocated for the ?

) trial. Part of the subject's task was to budget the available time over the three or six
comparisons so that all comparisons could be completed and full use made of the available

time. The criticality of accurate budgeting can be seen from Equation (3.5). N

Response Time=mT' +b (3.5) Resle

where m is the number of comparisons (three or six), T' is the average amount of time the ';:;o'.:‘g
subject allocates to each comparison, and b is the overhead, startup, or initialization time (':‘:1
for a trial. It is assumed that the value of b is independent of m. According to this model, ?‘ %
the subject must choose T' so that the resulting response time is less than or equal to t.

Clearly, with increasing m, the detrimental effect of setting T' non-optimally increases ';p‘.\;
relative to the detrimental effect of the fixed overhead, b. L \3

3.4 PURPOSE OF THE TASK CONSTRAINTS
3.4.1 Constraints on the Experimental Setup ;’E’,
X

In order to constraint the strategies the subjects could use, two restrictions ( already
mentioned in section 3.3) were imposed. First, ratios were displayed in pairs and only one N
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pair was identifiable at a time . Second, a final response was permitted only after all of the

four or seven ratios had been displayed. These two procedures forced the subjects to make
a given number of comparisons -three when four ratios and six when seven- or at least
forced them to consider all the ratios. Having a more precise idea of the steps the subjects
went through is an essential tool when computing the workload, since workload is
dependent on the amount of information that the subjects process. Such restrictions also
eliminated the variation in the order of information acquisition which could increase the
workload, if the subjects had been hesitant when deciding which ratios to consider first.

Within the rest of the thesis, since one of the goals is to study the difference
between trials of three tasks and trials of six tasks, a trial will be defined as a set of three or
six tasks, where one task corresponds to finiding the smallest of two ratios.

3.4.2 Instruction to the Subjects

Subjects were instructed to attend only to the numeric information of each ratio even
though the physical distance of each ratio from the center was proportional to its numeric
distance (Casey, 1987 b). This was done to restrict the number of strategies the subjects
would use.

This restriction is important, because Greitzer and Hershman (1984) showed that an
experienced Air Intercept Controller tended to use physical distance information only (and
not speed information) in determining which of a number of incoming ratios to prosecute
first. This simplified strategy was labeled the range strategy. The operator was, however,
able to use both range and speed information -- the threat strategy -- when instructed
explicitly to do so. The threat strategy, if executed in a timely way, is of course more
effective than the simpler range strategy.

3.4.3 Constraints on the Ratios

Another method, which was used to monitor as closely as possible the amount of
work the subjects did, was to impose constraints on the ratios. The ratios were very
carefully chosen to equalize the difficulty of the different comparisons and trials. (Changes
in performance were not to be caused by differences in task difficulty, but because of
overload.)
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For each trial, all ratios were either greater than or less than one. This restriction
was included because pilot work had shown that decisions involving ratios on opposite
sides of one were trivially easy, regardless of interarrival times. The greater-than-one /
less-than-one determination was made randomly for each trial.

Speeds and distances were selected subject to the following constraints:

(1) greater than 10 and less than 98,

(2) no multiples of 10.
(3) Each speed and distance combination was screened and rejected if the resulting

ratio was a whole number,
Additional constraints were that :

(4) no speed value be used more than once per trial;

(5) no distance value be used more than once per trial;

(6) no speed value be the same as its corresponding distance value; and
(7) no two ratios have the same value.

Distances were selected independently of speeds, but had to satisfy constraints six

and seven.

The second round of pilot experiments included these constraints. The subjects,
however, reported that some comparisons were still much easier than others. It appeared
that the ratios less than one could be very difficult to compare because the numerical values
could be very close. To avoid especially difficult comparisons, new constraints were
imposed on trials of ratios less than one. For the same reason, the ratios larger than one
were also constrained. As a result, the candidate ratios obtained applying all the constraints
mentioned above were screened against the following new criteria:

(8) each possible pair of ratios within a trial of ratios less than one must differ by
no less than 0.05 and by no more than 0.9 and;
(9) in the greater than one condition, the minimum allowable ratio was 1.2;




If a candidate ratio failed on any criterion, a new ratio was generated and the

process was repeated until a complete set of four or seven compatible ratios had been
obtained. (An attempt was made to impose the same constraints on both the ratios less than
and larger than one, but when doing so, it was sometimes impossible to generate seven
ratios larger than one satisfying the appropriate constraints.)

3.5 FEEDBACK FROM THE SUBJECTS

Generally, subjects seemed to be challenged by the experiment. Many subjects
reported that the experiment forced them to concentrate hard and that they were glad that
each session was seperated into subsessions between which they could relax. Also, it was
a common feeling that there was a breakpoint after which they could not process the task
within the required time anymore. A few subjects mentioned that they had had a harder
time with trials consisting of ratios larger than one than with ratios less than one. Such a
difference was not built in purposely, but is described and explained in Chapter V: the
algorithms which were used by the subjects resulted in a higher performance for ratios
larger than one than for the ones less than one. Also, some subjects reported having a
difficult time with the keyboard: the response that they had chosen was not always the
response that they entered through the keyboard. (Most of the subjects made at least one
error just because they had just hit the wrong key! ) Such errors will be one of the sources
of noise and discrepancies which are found in the data. Finally, it appeared that there was a
delay between the instant when the key was pushed and the answer was recorded. This
delay was particularly critical for the small values of T, since subjects tended to answer as
late as possible; sometimes their right answer was not recorded.
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CHAPTER IV Egg?
. ey
THE EXPERIMENTAL RESULTS :“,
e
In Chapter III, the experimental setup was described. Chapter IV analyzes the ::::::
experimental results with respect to the hypotheses that may be tested experimentally. A
First, in section 4.1, the data recorded during the experiment is presented and the .:;;.
hypotheses are stated. In section 4.2, the methodology used to test the different hypotheses }:::E
is described. In section 4.3, the procedures required prior to testing the hypotheses are .:::':::j
presented. In section 4.4, the data is analyzed according to the different procedures and, “‘3"-’-:
in section 4.5, conclusions are drawn from the experimental results. ;-”\l
4.1 THEDATA AND THE HYPOTHESES i
walhit
4.1.1 The Data Collected ‘;;e
This section first describes the data recorded in general terms. Then, two examples ::3‘5:%

are given to explain how to reconstruct the data from the recorded data files. ::;.‘
e
For each trial, seven different data sets were recorded. (See Table 4.1) First the ;'::3?
average time allotted per task is shown in column 1. The average time varied between 0.75 .::;2:'.
sec. to 3.5 sec. for most subjects. The number of ratios for the trial is shown in column 2: R
either four or seven ratios, i.e., three or six tasks. In column 3 is noted whether the time ; o
per trial was increasing or decreasing: 1 indicates a descending series whereas 2 indicates "::. ‘:
an ascending series. The subjects' performance is recorded in column 4. The subjects :‘.&:
received a score of 0 if an answer was given but it did not match the correct answer, a score :"':
of 2 if no answer was given within the allotted time, and finally a score of 1 if the answer ..._
matched the correct one. Column 5 lists the two digit distance, followed by the two digit c‘ﬁ::l,'::
speed of each ratio in the order they appeared on the radar screen. In column 6 are ",
inscribed the ratio number that the subject chose at the end of each comparison. Finally in ; 3
column 7, the time ( in 10-2 seconds) the subject used to process each task is noted. Xy
\i’»

As an example of how to read the data files, two rows of Table 4.1, (noted *1 and *2 \~ "!fg‘j

in the table), are described. The trial recorded in the row, *1, may be described as follows. N ot
The average time T per task was 3.00 seconds, and there were four ratios, (three tasks), in i
o
::::i

¢
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Table 4.1 Sample of the Data Collected: Subject 50, Session 1, First Set of Three Tasks )

e

Col.1 Col.2 Col.3 Coi4 Col. 5 Col. 6 Col. 7 :::::::

Time #o0f  Asc/ Perf. SpeedandDistance  Resultof  Elapsed Time RE

T Ratios Desc. J of the Ratios Comparison  to Completion ?:::5:’:

of Task # -':;,;§

123 1 2 3 e

W

v:::o;:

3.50 4 1 1 2686316766873891 111 204 99 127 SI!

3.25 4 1 1 7344513949248857 2 22 214 308 290 e;“-

*13.00 4 1 1 4364185844521563 2 2 4 181 110 165 :;22:;!

2.75 4 1 2 5919652537139531 2 3 3 368 247 220 L

2.50 4 1 1 8297298431424676 222 241 71 82 SR

2.25 4 1 1 1289368253656283 1 1 1 132 77 55 .p:

2.00 4 1 1 4652118619514157 2 22 104 104 49 g

175 4 1 2 3764111562971634 110 373 1610 .,:E;;:%

1.50 4 1 1 3161179212425881 222 176 66 38 el

1.25 4 1 2 5716822144129622 100 3950 O .

1.00 4 1 2 2769347114634358 100 296 0 O ‘;‘:;;;

0.75 4 1 2 7139763588657537 100 2420 0 :!,.‘:E

2075 4 2 2 6245934837228267 110 192 11 0 b

1.00 4 2 2 3192218148724351 100 3020 0 i

1.25 4 2 2 6947743525166452 110 302 82 0 "-2;:1!

1.50 4 2 2 7596488753865563 2 20 201 2300 .3:-.:‘:'.?

1.75 4 2 1 1452139539692939 2 22 182 55 44 !

2.00 4 2 1 2555146124311798 2 2 4 181 104 151 ; "

2.25 4 2 1 5360164165752785 2 24 307 127 137 et

2.50 4 2 1 2233260464752959 222 187 99 105 R
2.75 4 2 1 4383647834393763 111 242 131104
3.00 4 2 0  5691135651926887 133 126 225 132
3.25 4 2 1 9862685588489673 2 22 263 121263
3.50 4 2 1 2779596614213681 111 159 94 258
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this trial (as indicated by the 4 in column 2). Then, the 1 in column 3, indicates that this
trial is part of the descending series: the T value was larger before this trial. The 1 in
column 4 indicates that at the end of the trial, the subject had correctly chosen the smallest
of the four ratios. From column 5, the value of each ratio for this particular trial may be
read. The four different ratios were:

Ry=43/64 Rp=18/58 R3=44/52 R4=15/63

From columns 6 and 7, the last information may be derived. Subject # 50 used 1.81
seconds (column 7, first number) to decide which was the smallest ratio of the first task:
The ratio # 2 was chosen, (see column 6, first digit). Then, between the result of the first
task and that of the second, 1.10 seconds had elapsed ( see column 7, second number ),
and the subject had chosen ratio 2, ( see column 6, 2nd digit ). Finally, it took the subject
1.27 seconds to compare the last two ratios ( ratios 2 and 4 ), and enter the final solution,

ratio 4.

The trial recorded in the row, *2, may be described as follows. There were four
ratios, (three tasks), and the average time per task was 0.75 seconds. This trial was
during an ascending series (a 2 in column 3), and the subject did not answer in time,
(indicated by a 2 in column 4). The values of the four ratios were as follows, (see

column 5):
R1=62/45 Rp=93/48 R3=37 /22 Ry4=82/67"

Finally, the subject chose ratio 1 as the smallest of ratios 1 and 2 after 1.92 sec. and
ratio 1 again as the smallest of ratios 1 and 3 after 0.11 sec. The subject then ran out of
time before entering a final solution.

4.1.2 The Hypotheses

The hypotheses which were to be tested using the experimental results were the

following:

Hypothesis(1): Decisonmakers are subject to the bounded rationality constraint, that is the
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bounded rationality constraint sets an upper limit on the amount of information that et
decisionmakers can process before their performance decreases drastically. Y,

Hypothesis(2): If the bounded rationality constraint exists, assuming that the workload ;:.*;:
for six tasks is approximately twice that for three tasks, (see section 4.2), is there a ot
significant difference between the value of the bounded rationality for three tasks and ey,
that for six tasks for each subject? e
In Chapter VII, two more hypotheses are tested combining the experimental and KR

analytical results. The first is designed to confirm that Fy;,, is stable for each subject as the i,

. number of tasks is varied. The second tests the stability of Fy,;¢ across subjects.

4.2 THE PROCEDURES TO TEST THE HYPOTHESES Wk

4.2.1 The Existence of the Bounded Rationality Constraint s

This section first describes the tests necessary to prove the existence of the bounded 0

w

rationality constraint. Then, the theoretical model, 'single step ', and the empirical model, XX
growth curve, are discussed. Finally, the growth curve is characterized.

In section 3.1, the theoretical model associated with the existence of the bounded e

- e

N - . . . . . Iy
rationality constraint is described as a 'single step’ function. Such a model is not feasible 1'0:::
when considering concrete applications; humans do not behave in such a rigid and hd
structured way, and unwanted noise always distorts experimental results. The empirical

P e

model which will be used to prove the existence of the bounded rationality constraint is a .:'0,:
growth model (described in the next paragraph). The first hypothesis, the existence of the !
bounded rationality constraint, may be restated in terms of growth curves as follows: L

3 (1) a growth model fits the data well; )
? (2) a growth model will fit the data better than a linear model; .;}.-4
: (3) the existence of a time threshold (which wall be noted T*), may be identified and e
constructed from the growth curve model. Th:- tareshold corresponds to the corner ’*':E

point of the step function shown in the theoretic.l model Figure 3.2. i, 5

The existence of Fy,, Will be proved first by showing that the growth curve is a good A
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model of the data, (same general characteristics and large R2). The second step will be to ‘0‘3;:4
show that a growth curve fits the data better than a straight line, i.e., it is possible to “'
identify a time threshold (breakpoint) after which performance decreases significantly. :'.;;;2*
g t
This will be done by showing that R2, the coefficient of multiple determination, is :‘.:::‘,;‘
(L
consistently larger for a growth curve fit than for a linear fit. (In a third step, the time :‘.;',":{
tae t,
threshold T* is evaluated for each subject in section 4.4.3) ry
o
. . . . g
The following paragraphs describe the general attributes of the family of growth 3‘,?::
curves. These curves are characterized by an S shape: the growth starts slowly 'i'é,:,
(characterized by a nearly flat curve segment), then the growth increases rapidly (steep "
slope) and finally levels off. A growth curve seems most appropriate to describe the riy
e
experimental data, since it characterizes patterns where quantities increase from near zero to ::!'.;:f:
U
close to the maximum level very rapidly. il
}‘?oﬁt’
®
For the purpose of this experiment, the most appropriate curve of the family of S 'g;‘.i
NEAS
curves is the Gompertzt curve which has the characteristic of not being symmetric about the .::s:::
#
inflection point. This is a relevant property, since one can not predict that performance will s:.:.::
OO
decrease in a symmetric way after the subject is working beyond the bounded rationality '
constraint. 3;;:';'
Al
a0y
The Gompertz curve has three degrees of freedom and is given by (Martino, 1972): ::55:%?
& l'
- @
-ct , "'::
Jt)=ae-be : 4.1) .3
,
where J is performance expressed as a value between 0 and 1. ‘o
)
The Gompertz curve may be characterized the following way: .,:::::;
L § .‘ '.'
| R
The asymptotes are: ph
e3D
At t=0, J(0)=aeD (4.2) 2o
1] \
e
. l)‘ L] '
Lim J(t)=a (4.3) ,:.
t 500 o '::1';.
bty
e
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3 The inflection point occurs at : . B
®
; ke
X tinf=In(b)/c 4.4) My
& |"..‘.
b o
") and the value of J at the inflection point is: O]
N ::;:
ZE Jing= a /el (4.5) :::::
5 . . . . s
o For linear regression using the least squares method, the Gompertz function may be Y
. . L]
linearized as follows: 2y
:': ::I'
:l ‘Qi::
3 Y=AX+B (4.6) .;:g::
: e
o
where < 373
o R
L g
i LM
R Y =Ln (Ln{a/)) (4.7) N
z: o:,,c'
ER. A ]
N X =t (4.8) -
0
h)
b A=-<B 4.9)
i
. B =Ln(b) (4.10) s
" ':::
i K P
)
4.2.2 Stability of Fy,,, Across Similar Tasks Nt
@
N 1!"‘:'
: When considering the experimental results, the stability of F,,x may be studied T
B assuming that the workload for six tasks is approximately twice that for three tasks. (See '.:':::‘é
" section 3.3) Therefore, in this chapter, the stability of Fy,, is tested only with respect to P
3 T*, the time threshold (introduced in sections 3.1 and 4.2.1). T* is assessed for each 's
“ . . . . I3 ’ .
;: subject for both three and six tasks in section 4.5, after the existence of the bounded :"_
T . )
: rationality constraint has been proved. Then, the distribution over subjects of T* for three - l‘:
L . . e . )
3 and six tasks is evaluated separately, and the type of each distribution is compared. o'
- Finally, the significance of the difference between the mean of the T*3 and T*q . .
Z o
‘: l.‘«
. 39 )
: R
S N e A e NN N A R e RS A A S Lt

L B



R A S P UL UL LAY SN L0 [ TP L AT L A U L T S L U P T R U R R R R R R TR T O N T NN I T T I R T O e N

distributions are compared using a statistical test, the t test. The hypothesis is validated, if iy

the statistical tests conclude that the two distributions are of the same type and the means ®

! are not significantly different. (A 0.95 level of confidence is used.) i-' ot
\J

i 4.3 THE PROCEDURES PRIOR TO TESTING THE HYPOTHESES a

4.3.1 The Data Analyzed ::‘,g

o T %

Since the hypotheses focused on the subjects’ performance, only the data strictly vy
related to the subjects’ performance: the time alloted per trial, the number of ratios for the py
given trial, and the score for the given trial are analyzed. (The rest of the data could o
provide basic data for future research. ) KN

g
¢
.
i
%
"

When assessing performance, a wrong answer and an incomplete answer were .
treated similarily. As a result, for subject i, for each trial k corresponding to the average ol
time Tj, the score was assumed to be an independant Bernoulli variable with probability by

Pij. “

1 If the tasks were completed within the alloted time X
and the correct ratio was chosen. X
Xijk = @.11) k!

0 Otherwise. °

An estimate of pj;, was computed as follows using the simple unbiased estimator P

%
Pj= 2 Xix /No (4.12) i
k=1

where N is the number of times the subject was run for each time interval. For most
subjects Ny is equal to 24. Bty

The estimated performance was plotted against the average time allotted per task for i
N - Subject #23 in Figure 3.1 and in Figure 4.2 for Subject # 35. o
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Figure 4.1 Performance Versus Average Allotted Time: Three Tasks, Subject # 23

Subject # 35, 3 Tasks
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r
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a
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Figure 4.2 Performance Versus Average Allotted Time: Three Tasks, Subject # 35
4.3.2 Data Transformation
Curve fitting will be used to test whether the Gompertz model fits the data well.
Since each p;; is the sum of N independent identically distibuted Bernoulli variables

divided by Ny, each p;; has a different error variance, and one of the necessary
assumptions for regression and curve fitting, i.e., equal error variances, is violated.

Variance (p;) = pj; * (1- pj; ) / No (4.13)

Therefore, in order to equate the error variances, the estimates p;j were transformed

41

) A "" O 4 X X vr\‘\.'-gv o A W o« W Mg W % A M YR e Tt ® " TRt AT AT T AT T At TR e L
OO ALY OO0 et o A A T P S TS I ST VR S e A S St
hy, *‘c"':?"ﬂ?l""'a!:'- « -.!‘t?l'n.!':‘.l Mg XL !.l ALK XA (T u. LT R S o 4! \ O e R e

DN

L G \"

IO KM WY



TR

)
[]

l
&

S

MEANAL IO AN O SR TN N MU P N U WU WY U N X A N T O R R R P U o P T S S T R S S S W S T

y

using the arcsine formula (see equation 4.14). The denominator (n/2) is a scaling constant
to keep the range of the estimates between £ and 1; the variances remain equal. The arcsine
transformation was used instead of the logit transformation because the logit transformation
is more appropriate for data which is symmetric about an inflection point.

(sin -1 (sqrt( Pij))/ 1.57 (4.14)

Table 4.2 shows the impact of the arcsine transformation on seven different values
ranging between 0 and 1. (Values 1/4, and 1/7 have been chosen since they are the
performance which would be expected if the subjects were simply guessing for the trials of
three and six tasks respectively.) The general effect of the arcsine transformation is to
slightly increase small values, while slightly decreasing large values. Since it has most
effect on both the lower and upper values, the arcsine transformation will tend to make a
threshold, (if there is any), less visible. The difference between the maximum and
minimum performances will be reduced as the whole curve is 'squeezed' and flattened.

Table 4.2 The Effect of the Arcsine Transformation
Value Transformed Value

0.0 0.0

177 0.247
1/4 0.334
04 0.436
0.5 0.500
0.6 0.564
0.8 0.705
0.9 0.796
1.0 1.000

All analyses reported herein are based on the transformed estimates which will be
called performances.
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4.3.3 The Gompertz Curve Regression

A computer package, RS/1, (Bell Labs) was used to estimate the Gompertz curve

parameters for each data set, and evaluate the fit, the R2. The program first asked for the :EE%EE
function to use as a curve fit. The Gompertz function was typed in. Then it asked where to sg;;;:
find the x values and the y values; these were stored in a table, the same for all subjects. L0
, The program then wrote the partial derivative of J with respect to a, b and ¢, and asked for :‘,".:
. starting values for a, b and c, as well as a convergeance criterion. The selected starting :::‘;E::f
f value for a was different for each subject since the subjects’ maximum performance was .i:iﬁj
‘ chosen. The same starting values for b and ¢ were entered for every subject, 2 for b and 1 ﬂ"eiﬂ
for c. Choosing different starting values in the same range would not have made any ‘\i
significant difference since for each subject the program ran by iteration until the error ".::‘é‘!
converged to 0.0001. When a performance of 0 was encountered the computer ,,E:'.;

transformed it to a small value, apparently in the range of 0.00001.

4.4 APPLICATION OF PROCEDURES AND RESULTS

4.4.1 General Characteristics of the Data Analyzed

i Performance versus the average time allotted per task was plotted for each subject for
‘ both three and six tasks for the transformed data. The curves appeared to have the :‘,“

following set of characteristics:

(1) They do not have the Yerkes-Dodson concave shape. This indicates that the
experiment succeeded in tapping into the moderate-to-high arousal portion of the ot
Yerkes-Dodson curve (see Figure 2.2), rather than the "vigilance" portion.

(2) Most curves tend to be flat (zero slope) for large values of T.

(3) They have positive slopes for smaller values of T.

(4) Performance drops and tends to level off for small values of T.

Figure 4.3 shows performance versus the average time allotted per task, t, for two

subjects. These curves were selected as being examples of strong, (a), and average, (b),
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representation of the threshold hypothesis. (These curves are the same as in Figures 4.1 AxN
and 4.2, but with the estimated performance.) s

Only half of the subjects have have more than one data point below chance level K
because the allotted time could not be decreased indefinitely. It was necessary that poor
performance be caused by mental and not physical limitations. The subject needed enough A
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Fig.4.3 Transformed Performance versus Average Allotted Time per Task for Two ®
Subjects. c‘::.:

> . .-
NSO

o,
-2,
-
o

44

W,

+) —_— W . .a:;:
A A e AR L X o \ e WD % W T, 2N A '
e LT T R el e R R Dty ::3\:':::




BOOOGHO0 DGAOBGHON N
IR ) ’3 .\ .\ I ) A
< 3:!" i". sﬁ!'t‘?.' a‘:‘!‘f‘Q‘f"‘t'!‘t"‘,.\"‘. %l!’h

time to press a key. One subject was eliminated from the sample, because the experiment
was not run properly (inappropriate time window) and the subject was not available for
further testing. As a result the population sample was reduced to twenty-five subjects.

The characteristics of the curves describing subjects' performance as a function of
average time allotted per task, suggest that a Gompertz curve could be appropriate for
summarizing the data.

4.4.2 The Existence of Fp,,, : the Gompertz Fit

The three parameters a, b, and c of the Gompertz curve were derived for each subject
for trials of both three and six tasks and are shown in Appendix A. The parameter 'a'
ranged from 0.42 to 0.83, the parameter 'b' ranged from 1.61 to 222.78, and 'c' ranged
from 0.77 t 0 7.15. The distribution of the values for parameter 'b' was not uniform: for
trials of three tasks, 23 of the 'b' values were less than 25.00 whereas for trials of six
tasks, there were 22 'b' values less than 25.00. The large values taken by the parameter
'b' for some of the subjects was due to the following reasons. First, performance J, is not
very sensitive to changes in b. Second, a very small convergence criterion was used in the
regression. Finally, by combining equations 4.2 and 4.3, b may be expressed as the
logarithm of the ratio of the performance at T equal zero, to the performance as T tends to
infinity. Therefore, if the subject's performance for very small T values is O or close to 0,
b will be very large. In the five cases when the parameter 'b' was exceptionally large, for
the lowest T values, the subjetcs' performance was very close to 0.

In every case the Gompertz fit was good: the min R2 was 0.93, and a check of the
residuals showed no consistent pattern which could indicate that the Gompertz was not an
appropriate model. Also, in every case, the Gompertz fit was at least as good and almost
always significantly better than a straight line fit. (See Appendix B). R2 ranged from 0.93
to 0.99 for the growth curve, whereas for the linear regression, R2 varied from 0.45 to
0.93. A one sided statistical t test was made to verify that the R2 for the Gompertz fit were
significantly larger than that for the linear fit. The t value obtained was 23.7. It is much
larger than the maximum t* value which would confirm that the two distributions are not
significantly different. (t* g5 24=1.078 for a one sided test with a 0.95 level of confidence
and 24 degrees of freedom.). In section 4.4.1, the characteristics of the data were
described as being similar to the characteristics of the Gompertz curves. These
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observations, combined with the large R2 values for every subject indicate that the
Gompertz curves are a good description of the data. The t test confirms the Gompertz'
good fit as well as the existence of a time threshold T* (which will be evaluated in section
4.4.2): The bounded rationality constraint exists.

Figure 4.4 show the Gompertz fit superimposed on the observed data. The subjects
and the number of ratios are the same than the ones used for Figure 4.3 a-b.
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Figure 4.4 The Gompertzt Fit for Two Subjects
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4.4.3 Evaluation of T* bt

The existence of Fy,,x was proved for every subject. Before testing the stability of \

Fmax » procedures to evaluate T* are needed. This section describes how T* may be
found both analytically and graphically.

In order to stay as close as possible to the theoretical model, (the corner point of the ;}?

'single step’ function), T* was defined as the point at the intersection of the following \

tangent lines: the asymptotic performance (the parameter 'a’ of the Gompertz curve), and ::s;,'

the slope at the inflection point of the Gompertz curve. (See Figure 4.5). The first line °

forces performance to be at maximum, whereas the other is a good approximation of the Wy

speed at which the subject reaches maximum performance as T increases. Had the slope

. between the maximum and minimum asymptotes been constant, that slope would have been a..h‘ft’
‘ chosen. Figure 4.5 shows the tangent lines and resulting T* value for the same S curve as Py

shown in Figure 4.4 a. T

4 Scurve - Tangent % Tangent B

—_— s —— l‘g I..:

075 1 12515175 2 22525275 3 32535 St
) 'I"* Interarrival Time (sec) !

L - R l-Ra Lo

; Fig.4.5 Construction of T* using Tangents i

Analytically, T* may be also found as the intersection of the two lines: @

)

J =a s

{ (4.15) e
I =a T*+ P Ao

where a is the asymptote of the Gompertz fit. R,
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Therefore: !
T =(a~P)/a (4.16) ¥

where a is the slope at inflection point and P is intercept of the tangent at the inflexion 0
point.

: Since, (See equations 4.4-4.5) o
a=ac/el, and Jpfexion =2/ €!, and Tipfexion = In(d) /¢, o
then, Bt

Jinfiexion = © Tinflexion + B @.17) A

€
ST

B=a (1-In(b))/el (4.18) o

-

- o
v

Substituting o and B in equation 4.16 we obtain the folowing expression for T* v
¢ Tt=[el-1+In () 1/c (4.19) e
where b and ¢ are two of the three parameters of the Gompertz curve.

It is interesting to noticé that the asymptote of the Gompertz curve, the parameter a, is A0
not present in the equation. The sensitivity of T* with respect to a is nonetheless larger .::-.f:
than that with respect ot b or c, since a is related to T* through b and ¢ by the Gompertz
3 model. ( Further computations have shown, as expected, that T* is more sensitive to a

thanitistoborc.)
b 4.4.4 The Stability of Fy,¢ Across Similar Tasks: T*3 versus T*g

K

:.‘: ) For each subject i, T*; was computed for both 3 and 6 tasks and noted Ti*3 and

) Ti*6- The obtained T* values are shown in Appendix C and summarized in Table 4.3.
Both the mean value and the standard deviations were very similar for three and six tasks:

-8 2.079 sec. versus 2.069 sec. for the mean and 0.651 sec. versus 0.579 sec. for the
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standard deviation .

Table 4.3 Summary of T* Values (sec.) for Three and Six Tasks

Mean Std. dev Min. Max.

Three Tasks 2.079 0.651 0911  4.046
Six Tasks 2.069 0.579 1.080  3.504

Generally, the subjects had T* values for three and six tasks that were very close. A
little over half of the subjects, thirteen out of the twenty-five, had a larger T* for three tasks
than for six tasks. Also, since the mean of T* over subjects were very close for three and
six tasks, only a 0.01 difference), one was tempted to conclude that there was no
systematic difference in the T*s as a function of the number of ratios. To confirm such a
hypothesis, a few tests had to be performed. First, one had to check that the two
distributions were of the same type, and then, that their mean was not significantly
different.

The slightly larger standard deviation of the T3* distribution was mostly due to one
significantly larger T3* value: 4.046 sec. The subject who had a high T3* was not
performing especially worse for three than for six tasks but the performance was increasing
more irregularly. He had complained about the setting of the experiment, and reported
entering several times the wrong answer because of inadvertently pressing the wrong key.

A plot of the distribution of the T*'s for three tasks (Figure 4.6) and for six tasks
(Figure 4.7) leads to the hypothesis that the two distributions are normal.

It is interesting to note that in the case of three tasks, most of the difference between
the T* distribution and the normal distribution is due to the fact that the distribution of the
T*'s is extremely peaked. In the case of six tasks, the difference is caused both by the
smaller T* values as well as by the peak around the mean. The Chi-Square test consists of
evaluating the difference ( noted Q2 ) between the distribution under study and ( in this
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case ), the normal distribution; Q?2 is computed as follows: ;:;;"

5
Q2= X (Observed; - Expected; )2 / Expected; (4.20) R
i=1 \‘
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The Q2 values were 5.6 for three tasks and 4.4 for six tasks which were both smaller
than the critical value: X2 953 = 5.99. Thus, it could be concluded that the two
distributions were both not significantly different from a normal distribution, and were of
the same type. (A detailed description of the results of the Chi square tests is given in
Appendix D).

The next step was to compare the mean value of the T* distribution for three and for
six tasks. A statistical test, the t test, was run. (The test performed is the t test used when
comparing two dependent samples. See Appendix D.) The t value obtained was 0.09
(t=0.09 < t*33 95 = 1.74 ) which confirms the hypothesis that the two distributions
were not significantly different.

Therefore, it may be concluded that T* is robust to minor task changes, and
assuming that the workload for six tasks is approximately twice that for three tasks, the
same may be postulated for Fp,,. Asaresult, each subject i was assigned a single value
Ti* which was equal to the average of Ti*3 and Ti*6- The frequency distribution of the
individual T;*'s was plotted. (See Figure 4.8). This distribution is unimodal, very peaked,
and has mean 2.074 sec. and standard deviation 0.549 sec.

1 Observed — Normal
F 12,
; 10¢
q ¥
u 67
e a4}
n L, }
y O
< 1.25 1.26 to 1.79 to 2.36 to

1.78 2.35 290
Time Interval (sec)

Fig. 4.8 Distribution of the Average T;* Values.

The distribution of the T;*'s for three and that for six tasks was shown to be normal.
Such was also the case for the individual T* values -- A %2 test for goodness of fit revealed
non-significant deviation from normality: Q2 = 4.4 < %2(.95,2) = 5.99.
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The fact that the T* distribution is normally distributed is of interest since one may
postulate that F,,, for each subject will also be normally distributed. If this postulation is
confirmed in Chapter VII by the analytical results, then the hypothesis that Fp,,, is stable
across subjects will be validated.

4.5 CONCLUSIONS

The existence of the bounded rationality constraint, F,,«, has been proved by the
experimental results. T*, the time threshold associated with the bounded rationality
constraint, has been evaluated for each subject and both numbers of tasks. It was shown
that the T* value for three and six tasks were not significantly different. Therefore, under
the assumptior. that the workload for six tasks is approximately twice that for three tasks,
one may conclude that Fy,, is stable when minor task changes are made. Finally, a T*
value was estimated for each subject. The distribution of the individual T*'s was normal.
Such a result enables the postulation that Fp,, is stable across subjects.

The stability of Fyp,, both across similar tasks, and across subjects will be confirmed
in Chapter VII when both the experimental and analytical results are combined. First,
however, models of the algorithms used by the subjects are presented in Chapter V. Then,
in Chapter VI, the workload associated with these algorithms is evaluated.

.............

L T e e O N A R MR St R



S s e et 678 4 ik a4 AT ARt T T I P A T RO R oy 0 TR TN UL ANy V- fa" Y YO O T A F O T U U I Y TS

N
o
L
bt
J.q'l‘('
'c’:':'f
CHAPTER V e
N
THE DECISIONMAKING MODEL: THE SUBJECTS' VIEWPOINT - ~-
Ly ¥
r i
5.1 GENERAL PURPOSE ! !
'O ‘4
N
The goal of this thesis is to study the bounded rationality constraint F 4. Such a .;,;
L)
study requires both experimental and analytical results. In Chapter IV, the experimental ::S:::j:
results were described: the existence of F,x was proved, T* was evaluated for each :‘.:‘.:::
subject, and postulations were made about the stability of Fp,,, across tasks. The next goal .‘3!!*‘
of this thesis is to present the analytical results, (the computation of workload), and e
hy
confirm the assumptions raised in Chapter IV concerning the stability of Fp,;,. To :3':::;
compute the workload associated with the task, the subjects’ mental process must be ,1::,::
L L]
modeled and then transformed into information-theoretic algorithms. This chapter presents M)
basic models of the subjects’' mental process. - }v.ngl
A mathematical model attempting to describe the subjects’ mental process would be of . §
little significance if it was not validated. Therefore, it seemed appropriate to evaluate the VN
appropriateness of these models. After running the experiment, the subjects were asked to i
describe the algorithm(s) that they had used while running the experiment; these results are P ‘E:g‘
described in section 5.2. The major dififculties encountered when modeling the tasks are :&g
described in section 5.3. Then, simple mathematical models which took into account the e
algorithms described by the subjects were developed and are presented in section 5.4. -.-.,
"
Each subject was assigned to a particular algorithm. Before analyzing these models and i
computing the workload associated with each (Chapter VI), the appropriateness ot the ',:o‘
algorithms is evaluated in section 5.5. The performance of the models is compared to that O
3 of the subjects. ; . :
A
A
5.2 SUBJECTS' STATEMENTS E o
et
} 5.2.1 Correspondence with Cognitive Science . 5‘7
From reading the subjects' description of the algorithms used, as well as their general RN %
comments about the experiment, it appeared that the subjects felt under time pressure, and e
. . . ]
that they had been using coping strategies to perform the task. The task was to compare T
\‘:‘ o ":n‘ {
ez
53 W AW
.
[
'\'.-:J'
bn® Wt T | . RO Lo Nl S N ) h SIS Pt et LV R G R W I AN LI I B L ] W S I I T L T I S N T P I AR ¢ & t
R e A e S B e B



at e e
PR

Yo

-

-

.

!

5 0) i ' ﬁ‘ » hd . - | - LN ] - L]
N G I T ¥ ) Nt T SRR R ~
RO S T e R A e

PORIFUMFLY R A DM TPU ML S P Z SR TURCIAA AR L T IR SR O TLE O AR R R R A R I I I O I Ty

ratios and find which was the smallest. To ensure 100% performance, a computer program
would have processed the task by computing the value of each ratio and then comparing the
obtained values. It appeared that the subjects often only processed a portion of the input
information that they would normally process, if they had more time or aids (even pen and
pencil) to perform the task. Subjects used shortcuts and filtering methods that allowed them
to processes the most significant information. An example of such behavior were subjects
who systematically ignored the second digits of the two digit values of speed and distance.
Such an observation is similar to the conclusions drawn from the few studies of time
pressure found in behavioral decision literature.(Wright, 1974)

5.2.2 Retrieving Descriptions of the Model(s) Used

As it was mentioned in the previous section, the subjects were asked to describe the
algorithm that they had used to perform the task. Before the subjects' statements were
studied, different models that would be plausible descriptions of the algorithms were
designed. These models were used as guidelines when the descriptions were too vague.

The first task was to translate the subjects' description into a mathematical model.
Whereas some subjects seemed able to analyze very clearly the basic mental processes that
they have used, others seemed unable to do so. Phrases like "‘When the comparison is not
obvious...' appeared more often than expecied. A study of the rest of the description often
gave some idea of the algorithm (or at least the algorithmic structure) used. Here are a few
extracts of some of the subjects’ answers:

Extract A:
Step 1: Observe left hand column of multi digit fractions
Step 2: Try to look for 8's or 9's in the second column
Step 3: When digits on the left are the same, decide based on second column digits

Extract B:
For ratios <1 compare numerators if the ratios comparable, otherwise obvious
For ratios >1 if comparable try and reduce otherwise want smaller numerator, greater

denominator.

The models were aggregated into a few categories which are discussed in section 5.4.
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Translating the subjects’ description required a subjective methodology where both :‘.:;:::E
intuition and 'common sense' played a very important role. Such modeling methods . :;."'.;::’
required an evaluation of each algorithm using some test of appropriateness or some other 6,.’
evaluation method. Such a test, which was alluded to in the first section of this chapter, is E::.:'::Z;
described in detail, in section 5.5. :::S:::{r
b

5.2.3 The Stages of the Decision Process ;,;;;
W

In Chapter II, the decision-making model was described as a two stage process. The :o:'.'::::

first stage, the Situation Assessment stage, allowed the decisionmaker to analyze and ':{;’::’
assess the situation before making a decision in the response selection stage. At each stage, ".",'
the subject could choose from a set of algorithms to process the information. .,:":::j
~ f
When running the experiment, the subjects seemed to be using only one situation Wty
assessment algorithm. The algorithm consisted of looking at the clock and understanding ;:‘:% .
how much time they had to compare the ratios, understanding how many ratios would have b .:::f’
to be processed, and finally just looking at the value of the ratios present on the screen. The ) \
subjects did not mention these first steps which are the obvious steps that one would follow !':::::.,
when faced with such a task. ““}
N

The response selection algortithm varied from subject to subject. It appeared, ::‘.‘:i:f:?
however, that most subjects used the same algorithm, whatever the input ratios were. The ,'.::gf
main factor which seemed to induce a change in algorithms was the time allotted to perform ..ct
the task. When they could not process the task using the strategy they were most 3:‘:;2
comfortable with or their 'optimum strategy’, subjects often switched either to a simpler ,:‘::
version of the same algorithmic structure, or to a different structure. The subjects were \ ::"Sf
instructed not to guess unless it was an educated guess, but subjects sometimes just picked ?.
one of the two ratios randomly, often hoping that the next comparison would be easier. :-:::E:::
Changes in strategies due to increase in time pressure were very difficult to monitor since Wy ‘::;:
most subjects were not even aware of the change, or if they were, did not report it. b ':‘:
N

As a result, the models that were derived for each subject, encompass both the vk
Situation Assessment and the Response Selection Stages, but do not take into account the . .:“ N
subjects’ relationship with the clock. For this particular experiment, the two stage decision ploss e’
model of the single decisionmaker shown in Figure 2.1 may be simplified as in shown in ¥y :':
v

iy
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A
t‘.
n 5.2.4 The Issues of Pure and Mixed Strategies

4
s In the case of this experiment, when considering the type of strategies used by the
}i subjects, the notions of pure and mixed strategies as described by the literature seem
%‘. difficult to apply. (Boettcher, 1981). '
R

Pure and mixed strategies are defined as follows. In the case of the situation
E assessment stage, a decisionmaker without a preprocessor uses a pure strategy if whatever
}: the input, he uses a given algorithm to process that input with probability one, (he always
g uses the same situation assessment algorithm). In the case of the RS stage, the notion is
. very similar. For each input identified by the situation assessment stage, there is only one
:: response selection algorithm that the DM will use to provide a response. This may be
Y - expressed mathematically as follows:
R
= p(v=jlz=2z)=1 (5.1)
;
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where j is the algorithm selected in the response selection :':‘:‘.?:

z; is the output of the situation assessment algorithm. ot

o

In the experiment, it was very difficult to evaluate which strategy or algorithm(s) the 3‘:?6’

subjects were using. It was even more so when trying to identify which subject changed ,’}5{"

algorithm when. Because of the experimental setup, as explained in the previous section, s

(5.2.3), there was only one situation assessment algorithm, thereby there could only be a | n

pure strategy. For the response selection stage, the setup did not force the subjects to use "::qu

any particular algorithm. From talking to the subjects and reading their comments, it 'f;:::i

appeared that the subjects used a single strategy whatever the input was. It is only when X
) they felt too pressured that they switched from their 'usual’ strategy to a simpler one. '1i'.-
; Therefore, since the change of strategies was based on one of the input characteristics, (the :;'é::
| time available to process the trial), they were using a set of pure strategies for the response 4::::::
X <election stage. i
, 5.3 MODELING DIFFICULTIES o
‘ i
‘ 5.3.1 Requirements of Information Theory ':.'-‘
: . . . . . . 2
As described in Chapter II, information theory is a mathematical tool which may be :':E:::‘
used to compute the cognitive workload associated with a given task. Information theory :}:::::

imposes constraints and requirements on the type of tasks that may be modeled as well as nhy
' on the algorithms that may be used. These conditions restrict the type of tasks that may be gk
: simulated. | o
{ ."l.'ﬁ
One of the major constraints is that the tasks be well defined so that they can be "':::.
modeled using mathematical variables, or at least variables for which a probability |:.-:
; distribution may be derived. As a result, the quantities and parameters which are used must 'a':':i
! be measurable values, and belong to a finite set. .:":.::s
WL
The other conditions which must be fulfilled are that the decisionmakers be well ey
' trained and motivated and that they operate at a level where the bounded rationality is not in $ ]
effect. The last condition concerning the bounded rationality constraint is particularly : b,.
important to this section of the research and has serious implications when considering the Aty
algorithms that will be modeled to compute the cognitive workload. It has been metioned : ~.;
l':.-
N {
2
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“ that subjects have been switching from one algorithm to an other as the time allotted per
trial was decreased. When subjects felt overloaded, or close to being overloaded, many
switched to an algorithm for which the cognitive workload was less; these algorithms were
called coping algorithms. As a result, when modeling the task and assessing the workload,
. it will be very important to model the algorithm that subjects used when they did not feel
under serious pressure yet, i.e., the algorithm that they used when they have the most time

available.

The growth curves which were used to model the experimental data smoothed out any
change in strategy. Therefore, T* may be considered as an average over several 'T*', each
'T*' associated with an algorithm requiring less cognitive workload: a coping strategy.

~

Since the individual 'T*'s were not identifiable, the T* value (see equation 4.19) was
F:v retained. It may also be postulated, that the slope at which performance decreases, (more
’ specifically the slope at the inflection point), reflects the number of different coping
“ algorithms used by the subject as the time available to perform the task decreased: the larger
:‘ ' the number of different algorithms used, the smaller the slope, and consequently, the
& smaller the T* value.

b

o 5.3.2 The Limitaticn of the Mathematical Models

e

E Information theory restricts the type of algorithms that may be used as well as the
_ experimental setups. One of the major problems in trying to assess the mental workload is
": also derived from the difficulty or better the incapacity to include non-quantitative measures
3: in the mathematical models. How may one model a subject's mental process when the
:: subject describes choosing one ratio over another because 'the comparison was obvious',
‘_ or how can one describe the fact that another subject will just assume that 2/5 is less than
:} 3/7 7 In both cases, the subject knows (or thinks he knows) the answer and uses some
,,:: cognitive process to make a decision. No previous research has been done to evaluate and
N compute using information theory the cognitive workload associated with intuition. The
!. impact of memory on workload has been discussed in the literature (Hall, 1982, Bejjani,
ii 1985). In this research, for simplicity, it is assumed that the decisionmakers are
;: . memoryless with respect to short term memory. Also, with respect to long term memory,
’:: the only cognitive work which is assessed when choosing the sinallest of two single digit
), ratios is due to the distribution of each ratio. The cogniiive work required to retrieve the
‘} information from permanent memory is ignored but could be the subject of future research.
'y
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5.4 THE RESULTING MODELS
5.4.1 The Different Mental Approaches

When considering all the constraints imposed by the analytical tools as well as by the
nature of the task, the number of different approaches was quite small. It appeared that
there were only three different basic types of mental processes. Whereas some features
were common to all three types, the most important processing in each case was quite
different. The three different methods were the following:

Method 1. For each ratio, approximate the speed and distance with single digit
values, then compare the resulting ratio.

Method 2. Approximate the ratio (or its inverse) to its nearest integer and compare.

Method 3. Compare the differences between numerators and denominators.

Whereas for the first two methods the first steps could be done independently for
each ratio, the last approach included both ratios as soon as some processing was done.
Each method resulted in one, two or three different algorithms to include some of the
variability among subjects. The resulting set of models consisted of six different
algorithms that will be described in detail in the next section. Finally, before performing
any computation or approximation, it appeared that the subjects checked for any
significantly small ratio. If such a ratio was spotted, they ignored the other ratios and
would give the 'small ratio' as the solution. Such a procedure was even more widely
spread when the time allotted per comparison was small. For small processing times, the
notion of a small ratio was often less strict, and included ratios that would not have been
considered if the clock had shown more time available.

5.4.2 The Six Algorithms: Description of the Models.
Models derived from method 1

The first approach (method 1 described above), which consisted of approximating the
last digit of both speed and distance, was used by four subjects. Two different algorithms

resulted from this approach. The first approximation method, (named Algorithm 1), was to
simply truncate the last digit of both speed and distance values when performing the
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one of the two as a solution. Given two input ratios R1 and R2 such that

Ri=dl/v1 and R2=d42/v2,

Algorithm 2 is described in Figure 5.3.

d[1]=trunc[d1/10] d[2]=trunc[d2/10]
v[1]=trunc{v1/10] v{2]=trunc[v2/10]

dij/v[1] <?> d[2i/v[2]

/ = \
S1=R1 p (S1=R1) =0.5 S1=R2
p (S1=R2) = 0.5

Figure 5.2 One Comparison Using Algorithm 1

d[1]=round[d1/10] d[2])=round[d2/10]
v[1]=round[v1/10] v[2]=round{v2/10]

l"
d[1Iv[1] <> d[2)/v[2)

/ = \
p (S1=R2) = 0.5

Figure 5.3 One Comparison Using Algorithm 2
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comparison. The second method, (named Algorithm 2), is to truncate first the last digit of
the speed and distance values as for Algorithm 1, and then add to the truncated values 0 if
the second digit is less than 5 and 1 if the second digit is larger than 5. Once the ratio values
have been approximated, the subject has to compare the two resulting ratios. If the two are
not equal, the solution is the smallest ratio. If the two are equal, the subject randomly picks

one comparison for Algorithm 1 is described in Figure 5.2, whereas one comparison for
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Models derived from method 2

Only one algorithm was derived from method 2. This model had the disadvantage of
being different for ratios that were less than one and for ratios that were larger than one.
For ratios that were larger than one, each ratio was rounded to its nearest integer. Then, if
the absolute difference between the nearest integer and the ratio was more than 0.25, the
integer value was corrected by positive 0.25 or by negative 0.25, as appropriate. Then the
resulting values for both ratios were compared. As for algorithms 1 and 2, if the values
were the same, it was assumed that the subjects picked randomly one of the two ratios for
the solution. For ratios less than one, the inverse of the ratio is first taken. Then, the same
process as for ratios larger than one is used. The resulting algorithm was called Algorithm
3 and the process for one comparison is shown in Figure 5.4 for ratios larger than one and
in Figure 5.5 for ratios less than one. Considering the two ratios R1 and R2 already
defined for algorithm 1 and 2, Algorithm 3 is described for ratios larger than one in Figure
5. 4 and for ratios less than one in Figure 5.5.

Ratios> 1 i= 1,2
rat[i] = round[d;/v;]

if [rat[i] - (d;/v;)]1>0.25 then ratio[i] = rat[i] - 0.25
if [rat[i] +(dj/v;)]1>0.25 then ratiofi] = rat{i] + 0.25

?
ratio[1] < > ratio[2)

/ = \
S1=R1 p (S1=R1)=0.5 S1=R2
p (S1=R2) =0.5

Figure 5.4 One Comparison Using Algorithm 3 for Ratios Larger than One

Models derived from method 3

Three algorithms were derived from method 3 which consisted of comparing the
differences between the numerators and denominators ( distances and speeds) of the two
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Ratios <1 i=1,2

rat[i] = round[vj/d;]
if (1/ratfi] ) - (dj/vj) >0.25 then ratio[i] =rat[i] - 0.25
if (1/rat[i] ) + (dj/vj) > 0.25 then ratio[i] =rat[i] + 0.25

e

" us,

-

l7
ratio[1] <> ratio[2]

= TN

S1=R2 p(SI=R1)=05 S1 =R1
p(S1=R2) =0.5

"t
1|
g

Figure 5.5 One Comparison Using Algorithm 3 for Ratios Less than One

ratios that had to be compared. For Algorithm 4 and Algorithm 5, the difference between
the distance and the speed of each ratio was computed, then, the ratio with the smallest
difference was chosen. For Algorithm 4, the subject could come to a conclusion if the
difference was larger than 10. For Algorithm 5, the subject came to a conclusion if the
difference between the speeds was larger than that between the distances or vice versa. The
two algorithms are described below in Figures 5.6 and 5.7.

?

=

l’
S1=RI dy-vp +10 < d,-v,
7N
p (S1=R2) = 0.5

Figure 5.6 One Comparison Using Algorithm 4
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Figure 5.7 One Comparison Using Algorithm 5 Y

The last model, Algorithm 6 is a combination of Algorithm 2 and method 3. The 'e’*
subject first checks if there is not one ratio which has a smaller distance and a larger speed RN
than the other. If he can not make a decision by these criteria, the subject uses the i
approximation method of Algorithm 2. Algorithm 6 is described in Figure 5.8. ..

dl <d2 and v, >v,

YA .\'l
Yes No o
|'.'o‘:':"
Py! 'l:.‘ﬂ

S1=R1 d;<d, and v,>v ‘.:::.:!_
@
No Yes oty
Bty
d[1]=round(d; /10) S1<R2 R
d[2}=round(d2/10) -’:.,’C'C o
v{1]=round(v; /10) Rt
v[2]=round(v,/10) .
o
[Nl 0y §,
e
9 !
dLLIN1] <> d2IVI2) E&
o
< = > @
V27 R
S1=R1 p (S1=R2) =0.5 S1=R2 A
p (S1=R1) =0.5 it
el
;3:‘;
Y
Figure 5.8 One Comparison Using Algorithm 6 * ®
SRS
o
oy
O UK
63 R
®
o W
AN
TR ¥ e AT A % M M A o0 AT ® A" a® " ¥ <% o B K MR mo o et e et e e m e m T e e oNDe
B e R A A e e S e i R



N N T e 13 ok o B n %8 o8 008 Y0 2 0 5 8 ath a8 8% 22 a%2 aT4 aVA'A'R &'8 st WYY

5.5 EVALUATING THE MODELS ..::c‘
5.5.1 Purpose of the Evaluation )

The different models used by the subjects have just been described. However, before !

assuming that these models are a reasonable representation of the subjects' mental
" processes, the appropriateness of these models must be validated. To do so, the maximum B
;_f performance of each subject will be compared to the estimated performance of the algorithm }!:;jﬁ
associated with each subject. o

~5.5.2 Defining the Maximum Performance
" Each subject's maximum performance was established from the experimental results N

using the S curves. For subject i, the maximum performance is noted a3 for three tasks ®
and a; for six tasks, and may be derived as follows:

- g
P

e

forj=3and 6

aj=lim (J;(T)) 52) ;,;,;
T 3

o e oo
-~ o
O

Each of the six algorithms described in section 5.4 represents a pure strategy and is ‘®
B noted fy, with k taking values ranging from 1 to 6. For a given algorithm fi, the estimated
o performance will be noted Ji3 for three tasks and J¢ for six tasks.

The performance that would result from accurately using these algorithms has been PA
E estimated by simulating the experiment 300 times on an IBM PC. Each algorithm was :,::i,
programmed in Pascal, and the function "random" was used to generate sets of ratios :.,':.
i satisfying the requirements of the experiment, the same way the experiment had been set t....
up. But since whether the sets of ratios were less or larger than one depended on another Py
h random function, it seemed important to simulate the experiment for both ratios (larger than
. and less than one) for the same number of times.

Such a procedure gave particularly relevant information concerning the difficulty of ®
the experiment. Some subjects had mentioned that they found the ratios larger than one
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more dificult to compare than the ratios less than one. This observation was confirmed by
the simulation of the algorithms: the algorithms always performed significantly better for
the ratios less than one. Since the trials were independent identically distributed Bernoulli
variables, the estimated performance J; could be computed as follows:

Jj= Ukj<l + Jj>1)/2

where:
_ 150
Jgj<1= 2 xic1 /150

i=1

_ 150
Jkj>1= 2 xi>1 /150

i=1

However, since each subject's performance curve had been transformed using the
arcsine transformation to perform the regression analysis, it was necessary to make the
same transformation on the algorithms' expected performance to have values that could be
compared. Therefore, an arcsine transformation was made on the algorithms' simulated
performance. Table 5.1 shows the (transformed) estimated performance for each of the
algorithms for three tasks and the non transformed performance both for ratios less than
one and ratios larger than one. Table 5.2 shows the same results for six tasks.

The results are only estimates of the population's true mean. The variance for each
estimated performance was very low. It varied between 0.0005 to 0.005. (The sample size
was 300 of a population of possible combinations of ratios close to 1013.)

The algorithms' estimated performance values were larger for trials of ratios less than
one than for trials of ratios larger than one. The difference may be explained by the
constraints imposed on the trials. For trials of ratios less than one, the values of the ratios
were constrained so that the difference between any two ratios be at least 0.05. The same
constraint was not imposed on trials of ratios larger than one for practical reasons: when
running trials of six tasks, the program often could not generate ratios satisfying the
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constraints. Instead, the ratios larger than one were constrained to be larger than 1.2. Asa
result, the ratios larger than one were on average slightly harder than the ones less than

one.
: Table 5.1 Estimated Performance for the Six Algortihms for Three Trials
Algorithm Estimated Performance (Three Trials)
number Ratios < 1 Ratios >1 Overall Perf. Overall Perf.
untransf. untransf, untransf. arcsine transf.
h All 0.84 0.625 0.733 0.654
. Al2 0.86 0.645 0.753 0.665
y Al3 0.91 0.724 0.817 0.719
Al4 0.744 0.437 0.591 0.558
)
AlS 0.757 0.628 0.693 0.627
| Al6 0.86 0.705 0.783 0.692
v
: Table 5.2 Estimated Performance for the Six Algorithms for Six Trials
)
; Algorithm Estimated Performance (Six Trials)
number Ratios < 1 Ratios >1 Overall Perf. Overall Perf.
N untransf. untransf. untransf. arcsine transf.
[)
; ALl 0.645 0.538 0.592 0.559
) Al2 0.657 0.584 0.621 0.580
' Al3 0.774 0.427 0.601 0.564
4 Al4 0.608 0.349 0.479 0.486
; AlLS5 0.632 0.462 0.547 0.530
) AlL6 0.832 0.591 0.711 0.639

Figure 5.9 shows the estimated performance of each algorithm for both three and six
tasks. The algorithms perform better for thiee than for six tasks, but the ordering of the
algorithms’ performance stays almost unchanged. ( Algorithm 3 which performed the best

- - an e e .
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for three tasks, is only third to best for six tasks. The others have remained unchanged).

The average difference between performance for three tasks and performance for six tasks
is a 0.1 decrease. Finally, Figure 5.9 also shows that the difference in performance
among the algorithms is not very large. For three tasks, there is only a 0.16 difference
between the best and the worst algorithm, the difference is 0.15 for six tasks. However,
considering the small variances of the algorithms' estimated performance (in the range of
10-3), the differences should not be considered as negligible.

® Alg, 3Tasks © Alg., 6 Tasks
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Figure 5.9 The Algorithms' Performances: Three Tasks versus Six Tasks
5.5.3 Comparing Performance: Simulations versus the Experiments

The six algorithms described in section 5.4 were derived from the subjects’
descriptions. Each subject was then assigned to the algorithm which was closer to the
description he gave. The next step was to estimate the algorithms' maximum performance.
The goal of this section is to evaluate the appropriatness of the algorithms.

Table 5.3 shows, for three tasks, the number of subjects who were using each
algorithm, the average performance over the subjects and, finally, the algorithm's
performance (The subject's performance which was averaged was the asymptotic
performance, the 'a’ values of the Gompertz fit, see equation 5.2). Table 5.4 shows the
results for six tasks. The detailed table, showing each subject's optimum performance
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Table 5.3 Three Tasks: Subjects’ Performance Versus the Algorithms'

: Algorithm
p "
:
1
: 2
: 3
A 4
5
6

Number of Subjects
Using it

~N AW N W

Average Perf.  Algorithm's Estimated
Over the Subjects Perf.
0.573 0.654
0.590 0.665
0.715 0.719
0.555 0.558
0.655 0.627
0.682 0.692

for both three and six tasks, as well as the algorithms' performance is shown in Appendix

- E. The difference between the algorithms' and the subjects' performance was within a
close range for three tasks; this is shown explicitly in Figure 5.10.

® Alg., 3 Tasks

0 Subj., 3 Tasks
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Figure 5.10 The Subjects' Performance Versus the Algorithms': Three Tasks

3
4
y, Three subjects performed significantly better than the algorithms that they seemed to
' have been using. These subjects were in the School of Engineering and had had very high
b - scores on the SAT's and the GRE's. They seemed very familiar with approximation
h methods, therefore one may hypothesize that when the algorithms they were using could
]
1
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not give a significant conlusion, they made educated guesses.

For six tasks, Table 5.4 suggests that, on average, the subjects were performing
better than the algorithms which were modeled. Since not a single subject mentioned
using a different algorithm for three than for six tasks, the algorithms were considered to
be satisfactory models.

Table 5.4 Six Tasks: Subjects' Performance Versus the Algorithms'

Algorithm Number of Subjects Average Perf.  Algorithm's Estimated
# Using it Over the Subjects Perf.
: 1 2 0.543 0.559
2 3 0.688 0.580
§ 3 6 0.732 0.564
! 4 3 0.585 0.486
5 4 0.645 0.530
6 7 0.704 0.639

® Alg,6Tasks © Subj., 6 Tasks
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Figure 5.11 The Subjects' Performance Versus the Algorithms': Six Tasks

) Overall, the obtained results were satisfactory, and the next step of the research may

be described: Computing the workload associated with each algorithm and estimating F,x
for each subject.
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THE WORKLOAD: METHODOLOGY AND EVALUATION o
i
J .'
This chapter evaluates the workload for the different algorithms. Each is first '.‘é::
transformed into an information theoretic model, i.e., an algorithm for which the entropy of o
each variable may be computed. Then, the workload for each is evaluated. :‘\;:4
i
Section 6.1 describes the different steps of the modeling process. First, the input ::::':
alphabet is characterized, but it is impossible to enumerate. Then, the internal variables are ol
reviewed. In particular, the level of detail needed, and the effects of temporary and &i
permanent memory on the assessment of workload are studied. Finally, the impact of :‘:E:'
having trials of ratios either larger than one or less than one is discussed. Section 6.2 :;:'é
()
describes the steps followed to compute the entropy of the different variables. Finally , the e
workload is evaluated in section 6.3. First numerical values of the workload of the 'a'
different algorithm are given, then the feasibility of these values are discussed and the '.:'
experimental and analytical results are compared. ':,Q
b
6.1 THE INFORMATION-THEORETIC ALGORITHMS ;.
Yooty
0
6.1.1 The Input Alphabet ,‘:(:f
NS
The input alphabet is first defined for both numbers of ratios. Then the size of the S
alphabets and the input entropies are estimated. Qo
When the subjects start the experiment, the following information is available to =~
them on the computer screen: the number of ratios that are to be processed for the trial, the .,;
amount of time they will have to process the task and, finally, the distance and the speed of ',:.::f
\)
the two ratios that they will first have to compare. (See Figure 4.1). The time available to '1.
. o o 2
perform the task is a parameter which varies from trial to trial. ¢
(]
o
It is assumed that the amount of cognitive workload required both to acknowledge t: ;
the amount of time available to perform the task and to register the time available is \\} \
.t
negligible compared to the workload necessary to process the tasks. Therefore, the input :35 i
vector includes only the information about the number of ratios and the value of the speeds Q)
¥
t:;j )
70 A

» - % A A"

R
N LY ~

NI ¢ ' \ y ) \ o
QOO AN PRI M W M ) O AN ot X S
aQ‘.'A'.‘A'..l..‘l'n!t'p‘h’c'l‘!‘l"‘.l’n}lﬂ.l’u‘]’n’ .l‘!‘.l‘a.‘l‘»’l’o‘“.‘ 4075870, N ) X '\..:!‘,‘:.-l...!h..h TN 1IN, “' LA ‘



PR IR & IR TLIRES SR | PSRN LN (TR UR LY LU NUY VR TR CRUREEEAN R Y RN N U " A SH RN AR IR T BT

and distances of these ratios. As a result, the input vector to trials of three tasks consists
of a set of four ratios, whereas the input vector to trials of six tasks consists of a set of
seven ratios. Each threat is actually a pair of speed and distance values. In case of three
tasks, such an input vector noted x3 will be described as follows:

x3 = (dlfvl, d2/v2, d3/v3, d4/v4) (6.1)

where d1, d2, d3, and d4 are the distances associated with ratios 1, 2, 3 and 4, and v1,v2,
v3 and v4 are the speeds associated with the same ratios. An example of such an input
vector may be the following:

x3;= (11/ 34, 25/89, 32/33, 28/57) ©2)

The values taken by the distances and the speeds are constrained by the requirements
described in section 4.5. There are three types of sets: First, the set S of possible speeds
and distances, then Ry, the set of possible ratios where the speeds and distances belong to
S;. Finally X3, and Xg, are the sets of possible combinations of ratios for three and six
tasks. X3 and X, may also be divided into subsets of ratios larger than one and subsets of
ratios smaller than one, noted X3ix<1, X31x>1> X6ix<1» X6lx>1» T€Spectively.

The input alphabets are X3 for trials of three tasks and X for trials of six tasks. The
ordering of the components of each input vector matters, i.e., the two vectors x3 1 and x3 5
are not considered identical.

x3.1 = (11/ 34, 25/89, 32/33, 28/57) (6.3)

x3.2 = ( 25/89, 11/34, 32/33, 28/57) (6.4)

The above vectors are different because the order in which the subjects process the
ratios often has an impact on the final solution. The subjects use approximation methods to

compare tue ratios; as a result, when given the same ratios but in a different order, the

X
‘g =

probability of error is affected.

o
h‘;\ . ‘ﬁ‘

{lr'.
[ 9

The input alphabets have been characterized. Now the distribution and the number

of elements of the input alphabets X3 and X must be evaluated to compute the entropy of . 'c‘| Q)
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the input vectors x3 and xg.

The distribution of both alphabets is assumed to be uniform, because each input

;. vector x; is generated randomly. (It is assumed that each vector has the same probability of ey
being generated.). The cardinal of each input alphabet is difficult to assess because of the :9::::
constraints imposed on the ratios. Therefore these figures are estimated as follows. First ‘i
the number of elements of each alphabet is computed assuming that there are no constraints '.::i::
: on the sets of ratios. Then, a computer program is used to estimate the number of eligible .u':‘
i combinations of ratios when the constraints are included. A

The pool of acceptable ratios less than one is 3003, and the pool of acceptable ratios

P O

larger than one is 2407. (These figures were computed by generating every possible pair N

b

K of distances and specds and counting all the feasible ones. The number of ratios larger than ‘::Ef‘:'
3 one is less than the number of ratios less than one, because the ratios larger than one were "'

i subject to an additional constraint: they had to be larger than 1.2). % "E

: b .I.e

P
.

If the constraints imposed among combinations of ratios were ignored, the number otk
of input vectors less than one for three tasks would be:

4
A 3503 = 3003 * 3002 * 3001 * 3000 = 8.1162 * 1013 ©65) o

PR T R

and the number of input vectors larger than one would be:

Srrxle
AR I A

4
A,o7=2407 * 2406 * 2405 * 2404 = 3.3483 * 1013 (6.6 ) i

)

That is, ignoring the constraints imposed betweeen ratios, the size of the input alphabet X4
would be:

4 4
Aoz +  Agugy = 114645 * 1013 6.7) g

The same way, ignoring the constraints imposed betweeen ratios, the size of the input
alphabet Xg would be:

72
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7 7
Asps +  Aggy =2.187*%102% + 4.634%1023=2650* 1024 (6.8)

Such large input alphabets do not allow enumeration.

The program which was used to estimate the number of feasible input ratios was
based on the method used to generate sets of ratios during the experiment. An iteration
consisted of picking a distance and a speed satisfying the necesary constraints. Then the
number of possible second ratios was computed by enumeration. A second ratio out of the
pool of possible ratios was then picked randomly, and the number of possible third ratios
was then computed... Following the same procedure for the remaining ratios, for each run,
the program computed the number of possible second Nj, third N3, fourth Ny4..N ratios.
For each run i, for three tasks the number of possible combinations of ratios, noted Pj3
could be derived as the following product:

Pi3 = Nj1*Nig*Ni3*Nig (6.9)
and for six tasks Pjg:

Pis = Nj1*Nio*Nj3*Nis Nis*Nig*Nj7 (6.10)

The program was run 150 times for both ratios larger than one and ratios less than

one. The estimated number of of possible first, second, third ..seventh ratios were derived
for ratios larger than one and for ratios less than one for both number of ratios as follows:

Ratios <1
150
;Ijkl:( 2 Nijia ) / 150 j=1tw07 (6.11)
i=1
Ratios >1
_ 150
le>1=( ) Niji>1 ) / 150 j=1tw7 (6.12)
i=1

&




Therefore, the size of the input alphabet X3 could be derived as following:

4 _ 4 _
Caa= TUNyia + TUNyis (6.13)

i=l i=1
The results for three tasks were the following:
Cx3 = (3003*2567*2163*1793 )+ (2407*2355*2315%2276) (6.14)
Cx3= 2.9896*1013 + 2.9867*1013 = 59763 * 1013 (6.15)

The size of the input alphabet Xg, noted Cyg was derived using the same method as for
X3. The results were as follows:

Cxe = (3003*2567*2163*1793 *1459*1161*913)
+ (2407*2355%2315*2276*2238*2202*2168) (6.16)
Cxe= 4.6236* 1022 + 3.1910%1023 = 3.6534 *1023 (6.17)

The constraints imposed on the set of ratios also created difficulties when
considering the internal variables which are described in section 6.1.2.

6.1.2 The Internal Variables

Before considering the entropy of the internal variables and the workload associated
with each algorithm, the internal variables must be characterized. Therefore, as a first step,
the subjects’ approach to the experimental task and the level of detail used for modeling the
algorithms are defined. Then the methodology used to assess the probability distributions
of the internal variables is described.

Two different approaches were possible when modeling the experiment The
subjects’ tasks could be interpreted either as : 'to find the smallest ratio of a population
sample’ or as 'given four ratios, find the smallest'. In the first case, the distribution of the

...................

‘‘‘‘‘‘



value of the smallest ratio when observing samples of four would have been the critical
issue. In the latter case, the values of the smallest ratio would have been of no importance.
Instead, the smallest ratio's position in the sequence ( that is what is the first, second, third
or fourth) would have been the required solution. The first approach was modeled in this
thesis. The stategies that the subjects reported using were influenced by the values the
ratios could take. Therefore models based on population samples seemed more
appropriate. Another modeling issue related to short term and long term memory. With
regard to short term memory, it is assumed that the decisionmakers are memoryless: they
do not remember the approximated value of the ratio which was smaller in the previous
comparison and must approximate it again for the following comparison. Such an
assumption was derived after talking to subjects. They reported that they generally

reestimated the ratios for each comparison. With regard to long «erm memory, it was

assumed that the subjects could rank order the single digits ratios and did not need any
special algorithm to do so.

The modeling approach has been discussed and the level of detail used in the models
is now described. Within each algorihm, the different processes are kept as steps, but each
operation required to perform the process is not recorded as a variable. This methodology
keeps the number of internal variables under control; only the basic variables are recorded
as variables. The internal variables of the first decision of Algorithm 1 for three tasks are
described below in Figure 6.1, as an example.

The notation used in Figure 6.1 may be described as follows:

dij = jth digit of distance of ratio i. dij ranges from1to9
0 if the two values are the same

w21 = min(Ti,Tj) = 1 if the first is smallest, Ti in this case

=3

O

2 if the second is smallest, Tj in this case

33

£s]® e

w22 = distance associated with w21, where w22 takes the value of the distance
associated with the ratio corresponding to the value of w21. If w21 had taken a value of 1,

P

w22 would take the values of d(Ri), since Ri would be smaller than Rj; such a ratio could
be noted Ri'. If w21 takes a value of 0, each ratio (either Ri or Rj) has a probability of 0.5
of being chosen.
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Input vector, X X=(d1/v1, d2/v2, d3/v3, d4/v4) GO

I
-
-
(g
-

Internal Variables, wi s

wl =dl w5 =vl w9 = trunc(d1/10) =d11 w13 = trunc(v1/10) = v11 .t
5 w2=d2 w6 =v2 wl0 =trunc(d2/10) =d21 w14 =trunc(v2/10) =v21 e,
w3=d3 w7 =v3 wll =trunc(d3/10) =d31 w15 = trunc(v3/10) = v31 X
wd =d4 w8 =v4 w12 = trunc(d4/10) =d41 w16 = trunc(v4/10) = v41

A e P,

IF w17 d1<20 and v1>90 THEN Y =R1 END OF ALGORITHM W
ELSE IF wil8 d2<20and v2>90 THEN Y =R2 END OF ALGORITHM .

o
y i - e,

ELSE wi19=dllvll =Tl !
- w20 =d21/v21 =T2

w21 = min(T1,T2) .::,:
w22 = distance of w21 =d(w21)
w23 = speed of w2l = v(w2l) o

" .
)
s
. -

NEXT COMPARISON

Figure 6.1 The Information Theoretic Description of Algorithm 1: The First Decision bl

The modeling process and the choice of internal variables have been described. The
next step is to derive the probability distribution of each variable and compute the workload
of each algorithm. First, however, the impact of two of the experimental setups on the
probability distributions are discussed. The effect of having trials consisting of ratios either

E larger than one or less than one is described in section 6.1.3. Then, the assumptions

O My
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£
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required to evaluate the probability distributions are described in sections 6.2 and 6.3.
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6.1.3 The Trials: Ratios Less than One and Ratios Larger than One

The trials were set up so that whether the ratios would be larger than one or less than
one would be picked randomly. Such a setup had an impact on the distribution of the
internal variables. There was a 0.5 probability that a trial would consist of ratios less than
one, and a 0.5 probability that the trial would consist of ratios larger than one. Therefore,
the entropy of an internal variable wi may be expressed as follows:

H(wi) = - 3, pui(wi) logy pu; (Wi) (6.18)
wi
where
Pwi(Wi) = Pyilx<1(Wilx<1)*p(x<1) + pyiix>1(Wilx>1)*p(x>1) (6.19)

X is the ratio from which w; is derived
p(x<1)=p (x>1)=0.5 (6.20)

If a variable wi can only be derived either from a ratio larger than one, or from a ratio less
than one then exactly one of the two equations below holds (6.21 or 6.22).

Pwilx<1(Wilx<1) =0 (6.21)
or
Pwik>1(Wilx>1) =0 (6.22)

The input vector, X, as well as the individual ratios (di / vi) are such variables. For such
variables equation 6.18 may be rewritten as:

Hwi) = - 2, pyilwi) logy Py (WD)
wilx<1 (6.23)
-Y pui(wi) 10gp P (Wi)
wilx>1
77
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Finally equation 6.23 for the input entropy or the entropy of the ratios may be simplified as
follows:

H(wi) = - Z Pwilx<1(Wilx<1) *p(x<1) logs [Pwilx<1 (Wilx<1) *p(x<1)]
wilx<1

- Z Pwilx>1(Wilx>1) *p(x>1) logs [Pyiix>1 (Wilx>1) *p(x>1)]  (6.23)
wilx>1

As a result, the input entropy for three tasks becomes:
H(x) = 0.5 * logy ( 2.9896*1013) +0.5* log, ( 2.9867*1013 ) +1 (6.24)
H(x) = 22.3825 + 22.3818+1 = 45.764 bits (6.25)

Because of the experimental setup, for each variable, the distribution must be derived
seperately for the input vectors of elements larger than one and those of elements less than
one: two different probability distributions are obtained. Then, the two are combined as in
equation 6.19 to evaluate the entropy of each variable of the algorithms..

6.2 THE COMPUTATION OF ENTROPY
6.2.1 The Approach

The internal variables have been described and some of the computational issues
were raised in the previous section. This section describes the methodology followed to
assess the entropy of each variable.

A normal procedure to compute the probability distribution of each internal variable
is to use a computer program simulating a binning process to assess the histogram of each
internal variable as all the possible inputs are fed to the program. The probability
distribution is then derived from the histogram. For this particular case however, a binning
process using every element of the input alphabet may not be used because of the size of
the input alphabet. Therefore assumptions must be made to estimate the probability
distribution of each variable. First the two "categories" of internal variables are described.

78

OO On RO A A (g 30 O OO O TN
sl ‘:.":.'vfo'ito‘l‘.‘ifn‘lto"'.:'ﬁo':'u AN :'.‘:'..:9‘:!‘.:!'.“’:::3“"‘*. A MR

Dt A 0% LIS S LS M A RO N L A MO B Ve U S5 2 LS N

Ty
s

n"v'
&
7

s wow
Ja-’ .';

Py
Y,

A o
R

te‘.

Y
u'\‘n
Wy N
W88, "‘:‘ ' ‘S@‘\



T T R T N T T O T I R T

Then, the methodology to estimate the probability distribution is reviewed for each.
6.2.2 The Different Types of Variables

Two different types of variables may be identified within each algorithm: The
variables for which the entropy may be computed without comparing two ratios, and the
variables for which the entropy could only be computed after one or more of the
comparisons were made. For simplicity, the first group will be called the static variables
and the second the non-static variables. (In Figure 6.1, variables w1 to w18 are considered
as static, whereas variables w19 to 23 are non-static.)

The static variables are variables that are repeated, and are the same for each four (or
seven) ratios. The distribution of the static variables were computed for one ratio, taking all
the possible ratios larger and less than one. Then the same distribution was assumed for
each ratio. These variables reflect the size of the input, and as a result dominate when
considering the entropy of the total system. The very large entropy of these variables tends
to overshadow the decision variables of the algorithms.

The non-static variables describe three categories of variables: the decision process,
the approximated value of the ratios which were chosen to be the smallest after a
comparison, and the intermediate variables used to arrive at the approximated value. The
probability distribution of each category of non-static variables was estimated using
computer programs. The distribution of the non-static variables changes after each
comparison.

6.2.3 The Entropy of the Static Variables: Assumptions and Methodology

In this section, the most important assumptions used to compute the entropy of the
static variables are given, while the methodology used to compute the entropy of a few
static variables is described.

The first static variables to be considered are the ratios before they are compared.
The distribution among ratios less than one is assumed to be uniform. The same is valid
for the ratios larger than one. This assumptions is used even though the constraints
imposed on the ratios will make some ratios appear in sets more often than others. Let R
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be the pool of all feasible ratios, Rg the pool of all feasible ratios less than one and R} be
the pool of all feasible ratios larger than one. Then the above assumptions may be described

as follows:
VreR, pe Ry)=05=p(re R)) (6.28)
V r,e R;, Vr,eR;, pr(r)) = pr(xy) for i=0,1 (6.29)

Also, the entropy associated with each ratio of a set x = (R1, R2, R3, R4) is
assumed to be the same. It is assumed that the entropy of the ratios is independent from the
order the ratios appear on the screen. The entropy for each ratio may be computed as

follows:
HR =- 2, pr(R) logy [ pr (R)] (6.30)
R
whereR€ R
HR = 0.5 log, (3003) + 0.5 log; (2407) + 1 = 12.39 bits (6.31)

The distances and the speeds forming each ratio are the next static variables studied.
It is assumed that the distances are independent from one another, but are not independent
of the speed associated with them to form a ratio. The probability distribution among the
different possible distance values is not uniform. The entropy of the distances and the
speeds may be computed as follows:

Hyi= - Z Pwi(wi) log) pyi (wi) (6.32)
wi

where pwi(wi) was computed by iteration using the binning process, considering first all
the possible ratios larger than one, then all the possible ratios less than one. Each time the
value wi appeared, the frequency of wi was increased by one. The entropy was the

following:

H,,; = 6.41 bits (6.33)

80

'

I'.‘
o O NG A AN A I, kY O3 O O B W 270 K W ALy N )
'-"‘-‘9:’"""*-""":'-"1A‘o’."t.\ .?-M-'!?o'.J'!?o'.faﬂ!.o!!.'.. e ::5:':@ .@'!?: s c‘:'.l‘ 3 Ny *\ﬂ s G :\1&:‘{ ﬁgﬂ& m; & 3 "‘::"::::::'.

N "
0 I.'



WU WU LU R R TR SN W TN Y

where wi is a speed or a distance associated with a ratio before this ratio has been compared
to another ratio.

The same procedure was done to estimate the probability distributions of the first
digit of both speeds and distances.

H,; = 3.16 bits (6.34)

where wi is the first digit of a speed or a distance associated with a ratio before the ratio
was compared.

It is assumed that all the internal variables derived from the speeds and distances
were independent of the sequence of the ratios. (The first digits are an example of such
derived internal vaiables.) Therefore, these variables are assumed to be equally distributed
for all four ratios when considering trials of four ratios, and all seven ratios when
considering trials of seven. For exarple, when considering Algorithm 1, which is shown
in Figure 6.1, the sets of variables shown in Table 6.1 are equally distributed.

Table 6.1 Sets of Equally Distributed Variables

Variables Corresponding Internal
Variables

dl, d2,ds3, d4 wl to w4
vl, v2, v3, v4 w5 to w8
dl1,d21, d31, d41 w9 to wl2
vll, v21,v31, v41 wl3towlé
decide if di <20 and v1 > 90 wl7, wi8, w24, w32
dil/vil,i=1t04 w19, w20, w28, w36

The probability distribution of the other static variables were deiived using the
binning process and the assumptions just described.
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6.2.4 The Entropy of the Non-Static or Decision Variables: Methodology

The distribution of the non-static variables was computed differently for each
algorithm, since these variables were algorit* m-specific. However, the same terminology I
may be used to describe the steps that were f 1owed. \

Within each algorithm, the first two ratios noted Rjand Ry were approximated into
iy T1 and T2 which are the variables compared for the first decision, D1. It is assumed that '..:'

N Tj and Ty are equally distributed. The distribution of the decision D1, as well as that of M
the minimum of T and T was found by first assessing the distributions of T{ and T3, .‘
';s then, finding the probability that T{ would be smaller and finally by finding the probability ':f.:::
Ef' distribution of the minimum of T and Ty. The same procedure was continued until the .:,':32
# fourth or seventh approximated ratio was compared to the minimum of the previous o

comparison. While such a procedure was followed to find the distribution of the decision .

variables, the same method was used to assess the distribution of the 'non-static' variables.

The probability that the approximated ratio x1with distribution px1 be less than the
approxiamted ratio x2 with distribution px2 was computed as follows:

p(x1<X2) = 2 Pyy(x1) D Pya®)
all x1 x1

¢ The distribution of the min of two variables x1, x2, was computed as follows:

- -’0
P o g = i) "
. -
2o XIE I

y = min (x1, x2) (6.38)

(‘K,

e
-

Pyy) = Paly) 2 Px2(x2) + Pea) 2. Pai(xD) (6.39) 5]
y y °

These formulas were used to compute the entropy of the non-static variables of the
different algorithms. The entropy of each variable is shown in Appendix F.
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6.3 THE WORKLOAD FOR EACH ALGORITHM

This section first summarizes the most important assumptions regarding the
assessment of the variables' probability distribution. Secondly, the numerical values of the
workload are presented and discussed. Thirdly, the feasibility of the results is reviewed by
checking the consistency between the algorithms. Finally, the assumption derived in
Chapter III regarding the correspondence between the workload for three and for six tasks
is discussed. The evaluation of workload allows the testing of the hypotheses concerning
the bounded rationality constraint in Chapter VII.

6.3.1 The Most Important Assumptions

Many assumptions and approximations have been described in section 6.2. Each has
been used in the computation of the total entropy of the appropriate algorithm(s) to evaluate
the workload associated with each algorithm. The most important and the most critical
were the following:

(1) Assume uniform distribution of the input.

(2) Assume uniform distribution of the ratios, i.e., each ratio has the same
probability of occurring in an input.

(3) The distribution of the approximated ratios and all the intermediate steps to obtain
the approximated ratios is based on the first two assumptions.

(4) After a given comparison, the rate of change in entropy of the similar types of
non-static variables is assumed to be the same. The rate of change is defined as the ratio of
the entropy of the non-static variable used for comparison i to the entropy of the same
variable when used for comparison i-1. ( Examples of similar types of non-static variables
would be the first digits and second digits of the speed values, or the the actual distance
values and the approximation of the distance values used to make the comparison.)

6.3.2 The Numerical Values
The workload for each number of ratios and each algorithm was computed following

the methodologies described in section 6.2. The numerical values are summarized in Table
6.2. As one may see from the table, the value of the workload varies significantly from
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algorithm to algorithm. For three tasks the workload ranges from 165.62 bits to 275.58 ::'2:':
bits and the mean is 235.03. For six tasks, it ranges from 297.92 to 513. 59 bits and the "
mean is 433.04 bits. ‘_"
L) ":
Table 6.2 The Workload Associated with the Algorithms "'::
i
Algorithm Workload Three Tasks Workload Six Tasks 20
(in bits) (in bits) 2
0
1 210.103 386.700 :';;.;
2 262.031 480.059 s
3 275.582 513.594 &
4 227.858 417.450 "*
5 165.615 297915 \;l";
6 268.995 502.530 :?‘}:
dh
b ?1
The variation among algorithms is weighted by the number of subjects who were s,
associated with the algorithm. In Chapter V, each subject was assigned an algorithm ::3:%‘
which attempted to model the basic operations or approximations performed by the subject. Q::.:
Therefore, the average (over the subjects) workload required by the experiment may be il
computed by multiplying the number of subjects who "used" a given algorithm by the -.,
workload of this algorithm. The results, when considering the number of subjects "
associated with each algorithm, are summarized in Table 6.3. :‘ :
it

o
. . o
Table 6.3. The Average Workload for the Experiment Over Subjects et
N
Three Tasks  Six Tasks s ':
e
Average workload 243.625 450.270 "ga

Standard Deviation 40.353 79.057 :5:.::
) \
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very significant entropies, the number of intermediate steps required to transform the input v .&
. . . . W
into variables that may be compared plays a significant role in the total entropy. Such an :.,:::;::
i
observation is particularily true for Algorithm 5, which is very simple. It is also applicable ':%::é;
to Algorithm 1 which requires a limited number of steps before the comparisons are made. :3'::5*5
[
i
Algorithm 1 has a larger workload than Algorithm 5 (210.103 bits for three tasks, "t:::a.;:j
KN
and 386.700 bits for six tasks versus 165.615 and 297.915 bits) but it is still lower than :::E:ﬁ;
that of the other three algorithms. Six steps are required to transform two input ratios into "5':?:?-
two variables that may be compared: truncate each speed and each distance (4 steps), and 5 ,
then form each single digit ratio (two extra steps). The other algorithms require a significant v '.::':f
number of steps before a comparison is made. o) ‘,:::
t:::i:.:
The fact that algorithms 1 and 5 have smaller workload than the other three is s,
4,4
explained by their structure. Another method to check the results of the workload values is :E:::é:’
O N
by looking at the 3 different categories of algorithms which were derived in Chapter V. ‘.:::3:3{
A
The first category included algorithms 1 and 2 in which the ratios were transformed N _,.: 2
into single digit ratios and were compared. Algorithm 2 was defined as requiring more "" ,
processing than Algorithm 1 since for the first case the rounded ratios are compared QY "
Y
whereas in the other case the truncated ratios are compared. The computations of workload }.‘,:\.
confirmed the expectations, the workload for Algorithm 2 is larger than that for ) .‘;
Algorithm 1 (210.103 bits versus 262.031 bits for three tasks and 386.700 bits versus .se::;
480.059 bits for six tasks, an increase of 24.7 % for three tasks and 24.1 % for six tasks). | %‘,‘\‘
i
®
“".'.'.t
1,8
s
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6.3.3 Consistency Among the Algorithms

When looking at the workload for both three tasks and six tasks, the workload
associated with Agorithm 5 is signficantly lower than that of the other algorithms (165.615
bits for three tasks and 297.915 bits for six tasks). Such a low workload is explained by
the structure of the algorithm itself. The algorithm consists of comparing the difference
between the speeds and distances of the two ratios. Such a process requires only two steps
before making the comparison i.e., compute each difference, which drastically reduces the
workload. The workload is not based on the number of steps, but on the entropy
associated with each variable. Because many of the intermediate internal variables have
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The second category of algorithms included algorithms 4, 5 and 6. The workload
for Algorithm 4 is larger than that for Algorithm 5. The same structure is used, but
Algorithm 4 computes four differences as opposed to two and makes two comparisons as
opposed to one. The increase of workload was very significant, 37.6% for three tasks,
and 40.1% for six tasks. Such an increase could be expected since the amount of internal
processing is almost doubled. Algorithm 6 is a combination of algorithms 2 and 5. It uses
the first steps of Algorithm 5 to determine if a small ratio could be spotted before any
computation. If the test is not relevant, it rounds each ratio using the same methodolgy as
Algorithm 2. The workload for Algorithm 6 was slightly larger than that for Algorithm 2
as expected, (268.995 bits versus 262.031 bits for three tasks, and 502.530 bits versus
480.059 for six tasks.) The increase of 2.8% for three and 4.6% for six tasks is small.
The testing variables used in Algorithm 6 (and not present in Algorithm 2) have entropies
of a few bits only.

Finally, Algorithm 3 is a seperate category since a different strategy is used for ratios
less than one and larger than one. As a result, the number of internal variables is
significantly increased even though each comparison requires only six intermediate
variables (as Algorithm 1), two of which have entropies less than 2. Because of the
different strategies for ratios less and larger than one, the workload for Agorithm 3 is the
largest of all.

From the above remarks, it appears that the values for the workload are consistent
between the algorithms. As a result the relative differences between the workload of the
different algorithms are feasible and conclusions relating the different algorithms and their
'users' may be derived based on these values. The next step is to compare the workload
for the same strategies, but for the different number of tasks within a trial.

6.3.4 Comparing the Workload for Three and Six Tasks

In Chapter I11, it was postulated that the important parameters were not the number
of ratios but the number of tasks. The assumption was: the workload per comparison is
approximately the same for three and six tasks i.e., the workload for six tasks should be
twice that for three tasks. The experimental results seemed to confirm this assumption since
the T* values for three and six tasks were not significantly different. This section first
shows the ratio of workload for three and six tasks for each algorithm. Then the values

86

L PN A I Y

A

Vp ata ata ot

R Xy
o 1‘ ]
e



TR R PR AR PN AN KN VA IR

obtained are discussed and explained, and the validity of the assumption is assessed.
Finally, a simple linear regression modeling the workload as a function of the number of . W

tasks is presented .

The analytical results confirm the assumption that the workload for six tasks is ol
approximately twice that for three tasks. On average, the ratio of the workload for six tasks ::::::
to that of three tasks is close to 1.84. Table 6.4 shows the ratio for the six algorithms as ;',';
well as the average over the six algorithms and the average when introducing the frequency _ -é.::'i
of each algorithm. iy

Table 6.4 The ratio of the Workload for Six Tasks to that of Three Tasks

Algorithm # Ratio Average Over Subjects L

(Six Tasks / Three Tasks) . .. »

L \ .“K

\ 1 1.841 1.845 :.::!3‘

! by,

. 2 1.832 ‘ .:::.‘:1

! 3 1.864 ot

} 4 1.799 0

: 5 1.868 Ty
6 1.887

1.839

Average Over
Algorithms

The fact the the workload for six tasks is not twice that for three tasks should not be

regarded as unwanted noise. Such a ‘discrepancy’ is derived from the analytical models. 2
First the entropy of the input is not proportional to the number of comparisons and does not - :::’
: increase linearly with the number of ratios because of the log function. The input for three A ,',37
: tasks is 45.76 bits and for six 77.68 bits ). Then, the internal variables increase this Z
difference even more because the entropy of more than half of the internal variables reflect T
_‘ the entropy of the very large input alphabet. Finally, when considering the distribution of “ '0::‘:
) the minimum of two equally uniformely distributed variables (these were the assumptions . E A
used), it will be skewed towards the smallest values. This is particularly relevant to our W
experiment when considering the distribution of the min as the number of comparisons X o
8
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increases. The previous paragraph may be described analytically as follows:

Let X be an ordered population uniformly distributed and let N be the size of the
population. Then

1 L 244,
F itxe X _
Px(x) = . (6 .40) N
0 otherwise i
)

Let y = min (x;, x7) where x1, x3 are two elements of X, and fy the distribution of

: y then : rS
; oy
y .’i.g
y 2.,y b
: —(1-=)  ifyeX Wt
; £ (y)= { N'"N 6.41) bt
3 Y 0 otherwise 9?

Let z =min (y, X3), x3 & X and g, the distribution of z, then

®
%(1-%)2 ifze X ,,
£, = 6.42) o
0 otherwise :' e
(in

The distribution of the variable t £ X being the smallest of the nth comparison and a

variable u € X is:

IR I I

- -

n t .n-1 .

—(1-=) ifte X

£ = { N N (6.43)
0 otherwise

B
o -

As an analogy to our experiment, x; and xo may be assumed to be the first two ratios
to be compared. y takes the values of the ratios kept from the first comparison, x is the
third ratio to be compared, z, takes the values of the ratios kept from the second
comparison ect... The distributions become more and more skewed, thereby reducing the

4

-
)

‘-

-

-

entropy of the minimum after each comparison.
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The decrease in entropy after each comparison ranges between 2% and 5% of the
non-static variables. This is not very significant when considering the entropy of the whole

system and the entropy of the static variables which are not affected by the decrease due to
the comparisons. Also, in this particular case, the entropy related to the large input tends to
dominate the entropy of the system and absorb the changes due to the decrease of the
entropy of the decision variables (called non-static variables).

A simple least squares fit using the twelve data points of Table 6.2 (three and six
tasks, algorithms 1 through 6),

Y; =aXj +b (6.44)
where

X; =3,.,36,..,6

Y; =210.03, 262.031..., 268.995, 386.700, 480.059, ...502.530
yields

Y=66X+37 (6.45)
For X =3 Y =235

X=6 Y =433

Note that 37 is equivalent to about half the effort of a comparison and is not very
significant either for three or six comparisons. Because of the very few data points used
(twelve), this regression should only be considered as a gross model, but it is important to
note that the results are consistent with the other observations.

Therefore, considering all the assumptions which have been made throughout this
thesis, the analytical results do not contradict the experimental results. The assumption
made in Chapter IV was reasonable: the workload per comparison is approximately the

same for three and six tasks.

The workload was evaluated for each algorithm and the values were consistent both
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between algorithms and with the experimental results. Therefore, these values may be used i,, o
to assess the bounded rationality constraint for each subject and test hypotheses about the . ."’
3 stability of F,,, both across subjects and across tasks. ':“
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CHAPTER VII

THE BOUNDED RATIONALITY CONSTRAINT:
RESULTS AND ANALYSIS

This chapter derives the bounded rationality constraint for each subject and studies its
behavior. First, the hypotheses regarding the stability of F,,, are stated. Then, the
methodologies used to evaluate F,,x and to test the hypotheses are described. Next, Fpax
is evaluated for each subject and each type of trials, three and six tasks. Finally the validity
of the hypotheses are tested and the results are compared to the postulations made in
Chaper1V.

7.1 THE HYPOTHESES
Two hypotheses concerningthe stability of Fy,ax are to be confirmed.

Hypothesis (1). Fpax is stable for an individual when minor tasks changes are
made.

Hypothesis (2). Fpay is stable across individuals and across tasks.
7.2 METHODOLOGIES
7.2.1 The Procedures to Evaluate Fp,ax

In Chapter IV, the minimum average time required to perform the experiment was
derived for each subject using the experimental results. In Chapter VI, the workload
associated to each model was evaluated. The bounded rationality constraint which is noted
Fmax may now be computed for each subject and for both types of trials combining the
experimental and the analytical results.

As described in section 2.3, Fp,,, is the ratio of the workload associated to the trial
to the time threshold T*. Since the values of T* were evaluated as a time per task, the
value of T* has to be multiplied either by three or six to consider the total duration of the
trials. Therefore, for each subject and for both number of tasks, the value for the bounded
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rationality constraint may be computed as follows: e
Frmax ij=Gij/ [*T*] a.1) o':.u.l..f

where Wil
':‘.l'.‘.ﬂ

i is the subject number and j is the number of tasks ;’1‘
G ;,j1s the workload of the algorithm associated to subject i for j tasks it
T*; is the threshold processing time associated to subject i for j tasks

7.2.2 The Procedures for Testing the Hypotheses . N .::"

The methodologies used to test the hypotheses are very similar to the methodologies e
used to test for the stability of T* across trials and across subjects. ’ Tl

To test the stabity of Fyay across trials, first the diswibutions of Fy,,, 3 and Fyy, 6 e
are assessed using a statistical test (the Chi-Square test) and are then compared. If the two
distributions are of the same type, then it is tested if the mean of the two distributions are D
significantly different using a statistical test, (the t test ). .v‘:::'..

The second hypothesis: the stability of Fy,,, across trials and subjects is more simple MhNh
to confirm. First, an Fpy,, value is estimated for each subject, ( for each subject, Fp,, is & o
the average of Fpy,y 3 and Fpy,x 6). Then, a Chi-Square test is used to estimate whether the :ﬁ:ﬂ::‘
Fmax distribution is significantly different from the normal distribution or not. A °
non-significant difference would lead to the conclusion that Fy,, is stable both across 25

subjects and tasks. MRy
7.3 COMPUTATION OF F 3¢ 5

The values of Fp,,, were computed for each subject for both number of tasks and are E‘
shown in Table 7.1 and were summarized in Table 7.2. The average value of Fp,, j over AN
subjects is 44.35 bits/sec for three trials versus 41.00 bits/sec. for six trials. The standard °
deviation for three tasks is quite large 15, as is the one for six tasks, 13. It is interesting to s
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notice that in both cases the standard deviation is almost one third of the mean. "‘:.;,';

%

Table 7.1 The Fpy,, Values for Each Subject and Both Numbers of Tasks .

&

Subject # Frax3 Frax 6 :.:}:

’ Ay

: 20 42776 30.714 b
§ 21 47.036 32.636 f
! 22 83.378 64.422 2
‘ 23 64.838 46.516 e
25 25.896 23.631 T

26 38.380 26.350 o

27 45.704 43714 3,;;::;
X 28 49.510 41.220 5
g 29 28.214 22.549 - 15
; 31 42.719 26.839 b
; 33 31.605 29.064 i
: 34 36.016 61.100 "

: 35 27.241 35.911 %%
: 36 38.124 34.798 s,
37 30.595 31.217 ity
: 38 17.310 24.954 e
39 44.786 44.392 s

‘ 41 54.397 62.652 i
; a4 65.718 55.087 et
? 45 42.096 29.775 L
. 46 28.737 23.903 o
’; 50 45.150 44.840 i
51 31.113 42.148 o
52 64.684 54.414 P
53 40.672 42.081 0
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Table 7.2 Summary of the Fp,x Values for Both Numbers of Tasks ::
o
L
Frax,3 Fmax,6 ‘.::
(bits/sec) (bits/sec) o
6.9.0‘
e
o
Average 42.668 38.997 !
St. Dev. 15.068 12.873 g
4
Min 17.310 22.549 ::g.?:
Max 83.378 64.422 e
o
It is important to realize however, that the values obtained for the bounded rationality Wt
]
constraint are not of any specific interest if just considered as values. The different ::::::
3
algorithms that could be used to model the same task could increase the workload, and :‘:v:{:::
U
therefore Fp,,4 as well by a factor of two or more. Therefore, it is by studying the Mt
distribution of Fp,,, as the tasks is slightly changed, and across subjects, as well as by :(’ d
comparing the conclusions derived analytically with the conclusions derived experimentally &.:f
that the significant conclusions may be derived. As long as each algorithm is modeled "i:::
S8
consistently with the others, the comparisons may be done. “Sat
3
7.4 TESTING THE HYPOTHESES ' :
5
7.4.1 The stability of Fpyx Across Trials 0
KX
04
To test the stability of Fy,x across trials, the distribution of Fy,4 3 and Fy,x ¢ must :' " Y
first be evaluated. In Chapter IV, it was established that the T* values were normally :::.‘:‘3_
b AN
distributed for both three and six tasks and it had been postulated that the distribution of the N
T*'s should be closely related to that of Fp,,,. This postulation was confirmed: goodness R.-
of fit tests showed that the distribution of both Fy,4 3 and F34 ¢ were normal. (The Q2 :?;._ .
error was 2.0 for three trials and only 0.8 for six trials. See details in Appendix D). 'E:;
Figure 7.1 shows the distribution of Fp,,4 3 over subjects, and Figure 7.2 shows the v
frequency distribution of Fpy,4 6. The difference between the normal distribution and that _
of the Fy 4 3 values is shown in Figure 7.1, whereas the difference between the normal '
distribution and the Fp,y ¢ values is shown in Figure 7.2. (Notice that the size of the e
intervals are not the same. The intervals are constructed as for the Chi-Square test: the h !
cumulative probability within each interval is 0.2, see Appendix D.) : ‘, \
‘R‘-\
eN
2 ]
b
94 e
7
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Figure 7.1 The Distribution of Fp,,x for Three Trials °
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Figure 7.2 The Distribution of Fpyy, for Six Trials e

The next step needed to validate the hypothesis that Fp,,, is stable across tasks is to
compare the meaas of the Fy,,, 3 and F5y ¢ distributions. The experimental results had
postulated that Fy,,, was not significantly different for trials of three and six tasks. This s e
result was confirmed by a statistical t test. The value for the statistical t test was 1.79 . The KN
critical value for a two sided t test at a 0.95 level of confidence with 24 degrees of freedom | ¥
is 2.06; 2.06 is larger than 1.79, so the hypothesis that the two distributions are of same
mean may not be refuted . ( See additional details in Appendix D.)

Therefore, one may say that Fp,,, is stable for each subject as the number of tasks is
varied from three to six. As a result, it may be assumed that there is only one significant

M) l.,
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value for each subject, which will be taken as the average of the Fp,,, 's for three and six :ﬁ:t
- tasks. W)

In addition, these results provide indirect evidence for the stability of Fp,,x over time, :jf-::
since each subject was tested on three or four different days. (A "composite” curve <
resulting from wide day to day fluctuations in the bounded rationality constraint would not ot
likely reveal a clear threshold.) This stability suggests that it may not be necessary to ey
g measure a decision maker's F,,,, value for every type of task the decision maker may have oot
i to perform. Instead, the decision maker's Fp,, value could be measured using a prototypic e
: "calibration" task. The value obtained from this prototypic task could be safely assumed to Wy

apply to a substantial range of structurally similar tasks. v

PN

7.4.2 The Stability of Fp,,x Across Subjects ¢

M
[
» "
r
e

The next step of this Chapter is to study the behavior of F,, over all subjects. The
Fnax associated with each subject i was computed as follows: N

L
? >
e
e

e
Y

Fraxi = Z Frmax,ij / 2 (71.2) Bt
j=3.6 [ J

we -

fori=11025 wa

v 2 -

The F;,x values were summarized in Table 7.3. A Goodness of fit test showed that e
:: the distribution was not significantly different from normal (the error, see Appendix D is Ree
N Q2=52<Xgg52=599). Therefore, it may be assumed that the distribution of Fp,x i
! over subjects is stable, and the analytical results confirm the experimental results. Figure
8.3 shows the disribution of the individual values of Fpyax. -

\
g The analytical results have confirmed the experimental results. The bounded \. N
) rationality not only exists for all the subjects, but it is uniformly distributed for each type of "\
‘ trials over the subjects, it is stable to minor tasks changes, and finally it is also uniformly Fr
distributed when assuming only one Fp,,x value for each subject.
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Table 7.3 Summary of the Average Fp,, Values over Subjects ;;: :',:
(in bits per sec.) - B

Mean 40.830 iy
Standard Deviation 13.013 v
Min 21.132 DU
Max 73.906 ey

—
[=Da =

*48
XN
'|:i‘.:«
(SN

<“<oDoco0~m
oM & oo

<2003 2004t0 358110 502010 > 6526 - RN
35.81 50.19 65.25 18

Figure 7.3 Distribution of the Average Fp,5x Values over Subjects

When considering a particular task performed by well trained decisionmakers, it may ®

' be assumed that despite the individual differences and the different algorithms used, the s
: bounded rationality is uniformly distributed among people. One could submit the S
' hypothesis that in a very strict environment such as the military, where people who perform |
the same job should all be very qualified, the distribution of individual bounded rationality ®

; constraint for similar tasks would not only be normal but also extremely peaked. This '&'ﬁﬁ'
could help significantly when designing organizations where the decisonmakers are not to "a':li

be overloaded. J
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CHAPTER VI

CONCLUSIONS AND FUTURE RESEARCH
8.1 CONCLUSIONS
8.1.1 The Thesis in Review

& Both the analytical and experimental results were needed to answer most of the
| questions related to the bounded rationality constraint of human decision makers. The first
significant results are derived from the experimental analysis in Chapter IV. First the
existence of the bounded rationality constraints was proved. Second, the minimum time
required to make one comparison on average, (noted T*3 for three tasks and T*¢ for six)
were identified for each subject. Finally, from the distribution of the T* values,
postulations were made about the two hypotheses which were still to be tested: the stability
i of the bounded rationality constraint both across similar tasks and across subjects. The
K first step in confirming these postulations is made in Chapter V where algorithms
representing models of the subjects' decision processes are identified and their plausibility
A is tested. Then, the workload associated with each algorithm is computed in Chapter V1.
Finally, in Chapter VII, the experimental and analytical results are combined to derive the
value of the maximum processing rate for each subject both for trials of three and six tasks.
The hypotheses are then tested: the bounded rationality does not only exist but it is both
stable across similar tasks and across subjects.

e -

8.1.2 Applicability of Information Theory

oo
-

Information theory was the mathematical tool used to assess the amount of cognitive
workload required to perform the experiment given the different algorithms that were
modeled. The workload associated with the different algorithms was consistent with the
complexity of the algorithms and the different categories of algorithms. Such a result gave
some validation of the mathematical model used. When trying to model the difference
between the number of ratios, there was a slight discrepancy between the experimental and
analytical results. Three postulations were made to explain the slight difference. First, the
model for three and six tasks might not have captured the different approach that the
) subjects might have taken during the experiment. When assessing models in Chapter V, it
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was found that simulations of the models for six tasks consistently predicted worse
performance than the subjects’, whereas the performance was very similar when
considering three tasks. Second, considering the very large size of the input alphabet, it is
possible that the subjects did not recognize that the probability distribution of some of the
variables were changing as the number of ratios to consider increased; the subjects might
not have changed their strategy accordingly. Third, it should not be forgotten that the
experimental results, particularly the T*'s were artificially constructed from the data, and
therefore necessarily introduced some marginal errors in the experimental results. Finally,
other factors such as time allocation, or short term memory may have affected the
workload, but these factors are beyond the scope of this thesis. Because not a single
subject mentioned using a different approach when processing trials of three and six
comparisons, the models described in this thesis are reasonable considering the small
discrepancy.

8.1.3 The Existence of the Bounded Rationality Constraint

The existence of a bounded rationality constraint for each subject was proved from
the experimental results. Performance was fairly stable before it dropped rapidly. The S
curves which were used to model the experimental results erased any discrepancy and at the
same time any change in strategy which might have been apparent otherwise. Therefore, it
may be postulated that the individual T*'s which were constructed graphically, represented
an average over several t*'s , each associated with a given algorithm requiring a certain
amount of cognitive workload. The individual t*'s were not identifiable, therefore, the
value which was retained was the T*. The T* value was also considered as the critical
value (instead of any possible t*), because the workload surrogate as computed using
information theory, requires that the processors be above the bounded rationality
constraint, and such was not possible to assert for the t*'s. The algorithm associated with
each T* was supposed to be the algorithm corresponding to trials for which enough time
was allowed for processing the task.

8.1.4 The Stability of Fy,,, Across Tasks and Across Subjects

Both the experimental and analytical results confirmed the stability of Fp,,x across
similar tasks and across subjects. However, when comparing the experimental and
analytical results, it appeared that the stability of Fp,,y 3 and Fpyay g Over subjects (both
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distributions are normal) was a more reliable result than the stability of the individual F,,,
across subjects. ( The Q2 value was larger for the Fpy distribution than for the Fyy,y 4 and
Fpnax 7 distributions). This slight difference is derived from the discrepancy between the
workload per comparison for trials of three and trials of six tasks. One may conclude
however that Fp,,, is stable across tasks for each individual, across individuals for each
type of task, and finally that Fp,,, is stable when considered simultaneously across tasks
and across individuals. Considering the nature of the experiment, (the size of the input
alphabet which did not allow enumeration), the number of different strategies that could be
used to perform the task, the speed at which some of the subjects were capable to perforin
the task, the obtained results were very significant.

8.2 FUTURE RESEARCH

This experiment is only the first in a series of experiments trying to analyze and
quantify the bounded rationality of human decisionmakers under pressure. The task which
was analyzed was very basic and included only a single decisionmaker. Research has been
undertaken at the Laboratory for Information and Decision Systems at MIT to design
multi-person experiments and both validate some of the results obtained in this thesis on a
multiperson level and derive other conclusions on the behaviour of the bounded rationality
constraint. When considering multi person organizations, the impact of one DM being
overloaded on the performance on the organization as a whole is also an interesting topic to
investigate. In the latter case, the different organization structures should be studied.

When considering single person organizations, several issues which were raised in
this thesis but not explored thoroughly could be investigated. The first topic relates to the
small discrepancy which has appeared between the experimental results and the analytical
results. In particular, the question concerning the different approaches to a seemingly
similar task should be raised and explored further. How can the fact that subjects seem to
consider making three or six comparisons as just twice the same task, ( the T*'s for three
and six tasks were similar ) be modeled or predicted? Which other factors were involved
and not considered by the models? The second topic relates to the nature of this
experiment. The very large input alphabet only allowed approximations when computing
the entropy, and the simple task permitted many different strategies which were not clearly
identifiable. Running a single person experiment but with a more complex task which
would allow fewer strategies and involve long term memory to a lesser extent could be
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considered. An other interesting task would be to analyze the experimental results using a
different methodology to assess the T*'s and test if the conclusions still hold as strongly.
Finally, the change in strategies as the time allotted to perform the tasks is decreased should
be investigated. The slope at which the performance decreased should give a reasonable
indication of the coping strategies (if any) that each subject used to behave toward the
increasing time pressure. One could investigate the implication of subjects switching
strategies as the time allotted per trial decreased on the evaluation of Fiy,y.
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APPENDIX A :;g;;:
THE PARAMETERS OF THE GOMPERTZ FIT FOR EACH SUBJECT AND BOTH -
NUMBERS OF TASKS sy

i
Table A.1 Three Tasks: The Parameters of the Gompertz Fit for Each Subject ‘:;.',:
: “
¢ Subject # a b c W
Ny
20 0.6953 1.6076 1.0212 e
. 21 0.6010 9.5199 2.1388 o
; 22 0.5821 121.0751 7.1516 &
! 23 0.5425 23.2790 4.1538 b
: 25 0.6623 4.1534 1.4740 P
: 26 0.5540 3.9367 1.6926 2
! 27 0.8064 5.6502 1.7165 A
g - 28 0.6656 3.0943 1.5349 a:é?
g 29 0.6773 14991 1.0851 s,
2 31 0.5414 222.7760 4.0071 -2
v 33 0.6080 23370 0.9289 "
# 35 0.7903 2.0479 0.9781 e
36 0.6358 4.1795 1.5536 )
) 37 0.710i 2.3430 1.0926 o
“ 38 0.6431 2.7444 15118 3 E
K 39 0.5910 4.0600 0.7710 2
40 0.7374 3.5761 1.4590 o
s 41 0.6100 2.9660 1.7020 __
'; 44 0.6700 7.5195 2.6726 !
? 45 0.5908 17.1299 2.1973 A
B 46 0.6125 4.7761 1.0447 o
: 50 0.6683 6.3880 1.7990 o
’ 51 0.8295 0.9083 0.5494 ol
g 52 0.6771 20.3327 3.4126 oA,
N 53 0.6100 4.1469 1.4246 e
o L
‘: oy
i
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s Table A.2 Six Tasks: The Parameters of the Gompertz Fit for Each Subject Y
o e
! =
Subject # a b c :.:.:
(U
.ngt'
i 20 0.7733 2.1530 0.8917 o
g 21 0.6825 8.8417 15899 2
K 22 0.5939 82.9349 5.6819 by
< 23 0.5774 3.3351 1.9541 ?.',
25 0.6242 5.7319 1.6488 b
0 26 0.6643 2.6720 1.1043 o
<. 27 0.8147 8.0274 1.9412 4
i -
U 28 0.6932 2.0653 1.1767 ?'
& 29 0.7224 2.1707 1.1323 =3
4 31 0.5843 11.1012 1.5914 o
L O
P 33 0.6706 4.7400 1.1894 Rt
) LA
" 35 0.6987 9.9133 2.9269 0; X
o 36 0.5592 31.5352 3.7387 X
s 37 0.6954 2.6711 1.1221 o
H SNy
4 38 0.6740 3.2513 1.8216 i
W 39 0.4214 71.0487 2.3160 "
Y 40 0.6993 9.0014 2.0307 %
R 41 0.7177 9.8930 2.9997 o
i, |
. 44 0.7139 7.6628 2.4163 i
o 45 0.7106 12.7590 1.5870 ?~.
R 46 0.8040 6.4231 1.0212 T
N 50 0.6613 6.1570 1.8930 ot
LA »
¥ 51 0.7381 2.2252 1.2399 i
X 52 0.6361 14.7120 2.8631 f:
N 53 0.7177 6.2944 1.7876 RN
¥ ',:-F
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Subject #

20
21
22
23
25
26
27
28
29
31
33
35

37
38
39

41

45

51
52
53

] 50
!
|

RN e
OO
O .c””"'i“&'ﬁw '::"‘ "

Three Tasks
S Curve Line Curve
0.993 0.790
0.984 0.730
0.985 0.252
0.999 0.424
0.989 0.785
0.990 0.662
0.985 0.780
0.989 0.733
0.992 0.717
0.967 0.720
0.972 0.640
0.988 0.798
0.990 0.793
0.990 0.774
0.932 0.668
0.952 0.668
0.991 0.773
0.982 0.719
0.971 0.457
0.977 0.791
0.967 0.861
0.986 0.749
0.987 0.749
0.985 0.290
0.991 0.826

APPENDIX B

S Curve

0.984
0.993
0.992
0.988
0.994
0.992
0.989
0.991
0.992
0.972
0.989
0.987
0.986
0.977
0.986
0.927
0.987
0.984
0.993
0.982
0.968
0.995
0.983
0.996
0.965

THE R2 VALUES : THE GOMPERTZ VERSUS THE LINEAR FIT

Table B1 The R2 Values for each Subject for Both the Linear and the Gompertz Fit

Line Curve

0.766
0.897
0.452
0.501
0.829
0.828
0.782
0.741
0.826
0.847
0.879
0.656
0.525
0.653
0.664
0.864
0.804
0.849
0.541
0.891
0.923
0.827
0.827
0.627
0.625
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Subject #

20
21
22
23
25
26
27
28
29
31
33
35
36
37
38
39
40
41
44
45
46
50
51
52
53

o

APPENDIX C

THE T* VALUES

T* 4

2.147
1.857
0911
1.171
2.132
1.825
2.010
1.855
1.957
1.778
2.764
2.490
2.027
2.352
1.804
4.046
2.051
1.648
1.398
2.075
3.141
1.986
2.952
1.386
2.205
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Table C1. The T* Values for Both Numbers of Tasks for Each Subject

T*,

2.787
2.452
1.080
1.496
2.101
2.446
1.958
2.077
2.202
2.592
2.753
1.371
1.383
2.407
1.591
2.583
1.928
1.337
1.554
2.687
3.504
1.868
2.031
1.539
1.990
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APPENDIX D
THE DIFFERENT STATISTICAL TESTS: PROCEDURES AND RESULTS

D.1 THE GOODNESS OF FIT TESTS: THE X2 TESTS

D.1.1 Overview

Goodness of fit tests were used to test whether the distribution of the T*'s and the the
distribution of the Fpp, 's for both fthree and six tasks were normally distributed. The test
is done as follows:

n
Q2 =), ( Expected; - Observed; )2 / Expected; (D.1)

i=1

where Q2 is the deviation error form the normal, n is the number of intervals chosen,
Expected; is the expected frequency in interval i if the distribuiton was normal, and
Observed, is the oberved frequency in interval i.

The intervals were constructed around the mean, using + 0.842 and + 0.253 as
multipliers of the standard deviation to obtain five intervals with a probability density of
0.2. As a result the expected frequency per class for a normal distribution would be 3,
and the assumptions necessary to perform a Chi-Square test would be satisfied. ( A

minimum expected frequency of 5 per class is required to perform a goodness of fit test.)

For the distribution to be accepted as normal, the Q2 value must be less than the X2
value corresponding to the level of confidence chosen and the degrees of freedom. For
0.95 level of confidence and 2 degrees of freedom (2=5-2-1) we have :

X20.952 = 5.99 (D.2)

D.1.2 The Goodness of Fit Tests for the Different Distributions

For each distribution, a goodness of fit test was used to establish whether the
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distributions were different from normal. Tables D1 through D5, show the detailed
analysis used for the different distributions. ey
]

Table D.1 The Chi-Square Test for the Distribution of T3 it

Ranges for T3* Observed Expected Error
(insec.) Frequency Frequency (

02 o
0.2
3.2 WG
1.8 ‘:" ':':.-,_

¥
0.2 ‘l:g‘l;q"

<1.53
1.54 t0 1.91
1.92t02.24
2.25t02.63
264 >

&~ N O N
Ui v v v W

Total 25 25 5.6 " e

Q2 =5.6 < 5.99. Therefore, the distribution of T3* is not sign‘Ticantly different from
the normal. ®

Table D.2 The Chi-Square Test for the Distribution of Tg* :'.':‘,:

Ranges for Tg*  Observed Expected Error i::?%:%:-
(insec.) Frequency Frequency KA

0.8 !
1.8 ﬁ;.*::i:;:
0.8 :Q:O‘t‘
0.8 T
0.2 T

< 1.57
1.58t0 1.92
1.93 t0 2.21
2.22102.56
2.57 >

QN W NN
W th L W W

total 25 25 44

Q2 =4.4 < 5.99. Therefore, the distribution of T6* is not significantly different from
the normal. R
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Table D.3 The Chi-Square Test for the Distribution of Fy,y 3

Ranges for Fpax 3 Observed Expected Error

(in bits ) Frequency Frequency

<29.98 5 5 0.0
29.99 to 38.88 6 5 0.2
38.86 t0 46.48 7 5 0.8
46.49 t055.35 3 5 0.8
5545 > 4 5 0.2
Total 25 25 20

Q2 =2.0 < 5.99. Therefore, the distribution of Fy,x 3 is not significantly different
from the normal.

Table D.4 The Chi-Square Test for the Distribution of Fpax 6

Ranges for Fax 6 ~ Observed Expected  Error
(in bits ) Frequency Frequency

<28.16 6 5 0.2
28.17 t0 35.74 6 5 0.2
35.75 10 42.25 4 5 0.2
42.26 to 49.84 4 5 0.2
49.85 > 5 5 0.0
Total 25 25 0.8

Q2 =1.2<5.99. Therefore, the distribution of Fp,x ¢ is not significantly different
from the normal.
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Table D.5 The Chi-Square Test for the Distribution of the Average Fy,,

Ranges for Fax  Observed Expected Error
(in bits ) Frequency Frequency

<29.87 4 5 0.2
29.88 t0 37.54 9 5 3.2
37.55t044.12 2 5 1.8
44.13 10 51.79 5 5 0.0
51.80 > 5 5 0.0
Total 25 25 5.2

Q2 =5.2 < 5.99. Therefore, the Fy,,, distribution is not significantly different from
the normal .

D.2 THE t TEST: AN OVERVIEW

A t test was used to determine whether the mean values for T3* and Tg* were
significantly different. The same test was used for Fp,x 3 and Fpax 6

Before a t test was run, it was established using the Chi-Square test that both
distributions were of the same type: in each case the distributions were normal. Then, the t
test for dependent distributions was used. The hypotheses Ho| and Ho,, were as follows:

Ho;: the means of the T*3; and T*g; are equal, i.e., the distribution T*3; - T*g ;
has a mean not significantly different from 0.

Hoy: the means of the Fpax 3 and Fpay 6 are equal, i.e. the distribution
Frmax3,i- Fmax6,i has a mean not significantly different from 0.

A two sided test was performed. For each test, the t value was computed as follows:

= sample mean (T*3 ;- T*g ;) / (sample variance /sqrt(n)) (D.1)
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The critical t value for a 95% level of confidence and 24 degrees of freedom is
t*24.025 = 2.064. If

-2.064 <t < 2.064 (D.2)
; then it was concluded that the two distributions were not significantly different.

» The t value for the T* distributions was 0.1, whereas for the F,,,, distributions it was
K 1.69. Therefore both Ho; and Ho, are true.
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APPENDIX E
THE SUBJECTS AND THE ALGORITHMS
Table E1. The Subjects’ Performance Versus the Algorithms'
Subject # Algorithm # Three Tasks Six Tasks
Subject Algorithm Subject Algorithm
20 3 0.695 0.719 0.773 0.564
21 2 0.601 0.665 0.683 0.580
22 4 0.582 0.558 0.594 0.486
23 4 0.543 0.558 0.577 0.486
25 5 0.662 0.627 0.624 0.530
26 1 0.554 0.654 0.664 0.559
27 3 0.806 0.719 0.815 0.564
28 3 0.666 0.719 0.693 0.564
29 5 0.677 0.627 0.722 0.530
31 4 0.541 0.558 0.584 0.486
33 2 0.608 0.665 0.671 0.580
35 6 0.790 0.692 0.699 0.635
36 5 0.636 0.627 0.559 0.530
37 6 0.710 0.692 0.695 0.635
38 5 0.643 0.627 0.674 0.530
39 1 0.591 0.665 0.421 0.559
40 3 0.737 0.719 0.699 0.564
41 6 0.610 0.692 0.718 0.635
44 3 0.670 0.719 0.714 0.564
45 2 0.591 0.665 0.711 0.580
46 6 0.613 0.692 0.804 0.635
50 6 0.668 0.692 0.661 0.635
51 3 0.830 0.719 0.738 0.564
52 6 0.677 0.692 0.636 0.635
53 6 0.610 0.692 0.718 0.635
113
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APPENDIX F : THE ALGORITHMS AND THE INTERNAL VARIABLES bty
i FOR FOUR THREATS

F.1. ALGORITHM 1 :*:*ifi
F.1.1 Definition of Variables KX

Input vector X

X=(d1/v1, d2/v2, d3/v3, d4/v4)

Internal Variables
. wl=dl wi=vl
;}.‘ i w2=d2 wb=v2
w3=d3 wT=v3
‘N wé4=d4 w8=v4
w9=trunc(d1/10)=d11 w13=trunc(vl/ 10)=y1 1

w10=trunc(d2/10)=d21 wl4=trunc(v2/10)=v21
w11=trunc(d3/10)=d31 w15=trunc(v3/10)=v31
' w12=trunc(d4/10)=d41 wl6=trunc(v4/10)=v41

‘ wl7 if d1<20 and v1>90 then Y=RI1 stop, else
wi8 “if d2<20 and v2>90 then Y=R2 stop
; else

w19=d11/v11=T1

w20=d21/v21=T2
w21=min(T1,T2)
w22=distance of w21=d(w21)
w23=speed of w2l=v(w21)

w24 if d3<20 and v3>90 then Y=R3 stop
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w25=trunc(d(w21)/10) :.:.,:f:
w26=trunc(v(w21)/10) - DR
w27=w25 / w26=TS1
w28=d31/v31=T3 e

w29=min(TS1,T3) e
w30=distance associated to w29, = d(w29) s,
w31..speed associated to w29, = v(w29)

w32 if d4<20 and v3>90 then Y=R1 stop L
else T
w33=trunc(d(w30/10)) e
w34=trunc(s(w31/10)) CRIN
w35=w33/w34=TS2 !
w36=d41/v41=T4 s

w37=min(TS2,T4) ) :"t,"c'

w38=ratio associated to w37=Y WORKA

stop
Output Vector Y

F.1.2 Explanatory Notes DO
The different notation used in the previous algorithm may be described as follows: O
(Only one variable of each type is described. The other variables defined by the same f
notation are based on the same model.) R
dij=jth digit of distance of ratio i. dij ranges from 1t09 L
w21= min(T1,T2). these variables may only take three values 0,1 or 2
0 if the two values are the same
1 if the first is smallest, T1 in this case

2 if the second is smallest, T2 in this case

w25,w29,w37 are the same type of internal variables -
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w23 = distance associated to w22

w23 takes the value of the disance associated to the ratio corresponding to the value

of w22. If w22 had taken a value of 1, w23 would take the values of d(R1), since

R1 would be smaller than R2, such a ratio could be noted R1'. If w22 takes a

value of 0, each ratio (either R1 or R2) has a probability of 0.5 of being chosen.
w26, w30 and w38 are the same type of internal variables.
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F.2. ALGORITHM 2

F.2.1 Definition of Variables

Input vector X

U IO TSP L T AP S ML TSI TR AP0 T DR ) I A TR WU A TR T O T PO TR TSR TN TR A PURCTUR TR U TS A TR AR S LY RN )

X=(d1/v1, d2/v2, d3/v3, dd4/v4)

Internal Variables

wl=dl wi=vl
w2=d2 wb=v2
w3=d3 w7=v3
wd=d4 w8=v4

w9=trunc(d1/10)=d11

w10=trunc(d2/10)=d21
wll=trunc(d3/10)=d31
w12=trunc(d4/10)=d41

BN

K \2
xsd v g

wl7
wl8

w13=trunc(v1/10)=vl1
wld=trunc(v2/10)=v21
w15=trunc(v3/10)=v31
wl6=trunc(v4/10)=v41

if d1<20 and vI>90 then Y=R; stop else
if d2<20 and v2>90 then Y=Rj;stop else

w19=round ( (d1 - d11)/10)
w20=d11+w19

w2l=round ( (vl -v11)/10)
w22=v11l+w2l

w23=round ( (d2 - d21)/10)
w24 = d21+w23

w25=round ( (v2-v21)/10)
w26=v21+w26
w27=w22/w22=T)
w28=w24w26=T,
w29=min(T{,T7)
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w30 =distance associated to ratio of w29=d(Rg1)
w31 =speed associated to ratio of w29=v(Rg)

if d3<20 and v3>90 then Y=Rjstop else

w33=trunc [d (Rg;) /10)] = d1(Rg1)
w34=round [ (d(Rsy) - d1 (Rgy) )/10]
w35=d1(Rg)+w34

w36=trunc (v(Rg1)/10) = v1(Rs1)
w37=round [ ( v(Rs}) - vI(Rgy) )/10]
w38=v1(Rg)+W37
w48=w35/w38=Tg

w49=round [ (d3 - d31)/10]
w50=d31+w49

wS1=round [ (v1 - v31)/10 ]
w52=v31+w51

w53=w51/w52=Tj

w54=min(Tg;,T3)
wS55=ratio associated to w54 = Rg)

if d4<20 and v3>90 then Y=R,4 stop else

w57=trunc [d (Rg) /10)] =d1(Rg))
w58=round [ (d(Rgp) - d1 (Rgp) )/10]
w59=d1(Rgp)+wW58

w60=trunc (v(Rg7)/10) = vi(Rgp)
w61=round [ ( v(Rs2) - v1(Rg2) )/10]
w62=vI(Rg1)+w6l
W63=W59/W62=T52

w64=round [ (d4 - d41)/10]
w65=d31+w64

wé66=round [ (v4 - v41)/10 ]
w67=v41+w66

w68=w65/w66= T4
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N
3
Oy
4 ) :::
o
0
w69=min(Tg,,Ty4) .:::
¥ d
w70=ratio associated to w69=Y stop - "
& Output Vector Y o
o ::o:
N )
‘ F.2.2 Explanatory Notes o
N .:;‘,
‘t . . - . . 0 h
! The differer:t notation used in the previous algorithm may be described as follows: ‘:"::
™ e
(Only one variable of each type is described. The other variables defined by the same ::{:
. e
notation are based on the same model.) th
X o
! dij = jth digit of distance of ratio i. dij ranges from 1to 9 ,i:::
N ¢
.,iaf “‘0
) p‘b‘q
e d1(Rg;) = first digit of the distance of ratio (Rg;). Al
5 d2(Rg;j) = second digit of the distance of ratio (Rg;). " Ny
)::O |:l;
i )y
¢ 1ifd12>5 B
By w31 =round(d12/10) = W)
R 0ifdl2< 5 ‘.
o '.:
e w41 = min(Tq, T7). these variables may only take three values 0,1 or 2 ::0.2
s ¥ 0]
;ﬁ:: 0 if the two values are the same o
= 1 if the first is smallest, T in this case "
o 2 if the second is smallest, T3 in this case Y
@ ek
o N
:;‘ w41, w54, w67 are the same type of internal variables R N
A ( .
. . [ ]
" w42 = ratio associated to w4l '
':E w42 takes the value of the ratio corresponding to the value of w41. :'. "
f;:‘ If w41 had taken a value of 1, w42 wouid take the values of Ry, given that Ry is :  .:
U KA
) smaller than R», such a ratio could be noted Rg]. The probability distribution of "' .
W Rg is different from that of R1,(that of w25 is different than that of w1 or w2). dy
L) g ¢
;{'.'; If w41 takes a value of 0, each ratio (either Rj or Rp) has a probability of 0.5 of !-"
i3
- being chosen. E \
W8 't
¥ ey
. . L d
' w42, w55 and w68 are the same type of internal variables. .
g
g
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w44 = round(d2(Rg1)/10) = first digit of the distance of the ratio corresponding to Rg1

w46 = round(d2(Rg1)/10) = round off value of the 2nd digit of the distance of the ratio

corresponding to Rg1.
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F.3. ALGORITHM 3 e
F.3.1 Definition of Variables o
Input vector X hentyts’
X=(d1/vl1, d2/v2, d3/v3, d4/v4) '..;'
Internal Variables :‘:'.,:?
wq=dl/v1=R1
w2=d2/v2=R2 R

w3=d3/v3=R3 ':-a*:f:
wid=d4/v4=R4 !

§
w5 if [ (d1/vl)<1] then continue page 3 for ratios <1 ) "K
else ratios>1 =y

woé=trunc(d1/v1) 1':. J
w7=approximate(d1/v1-trunc(d1/v1) by
w8=w14+w16-i; oA
w9=trunc(d2/v2) ; el
! w10=approximate(d2/v2-trunc(d2/v2)) :
wll=w18+w20= Iy '
wi2 =min(I},Ip)
) w13 =ratio associated to wl12=Rg; o

U
wl4=trunc(d3/v3) ﬁv
w15=approximate( d3/v3 - runc(d3/v3))
wi6=wl4+w15=13 2 N
wl17=trunc(Rg1) ._.::
w18=approximate( Rg]- trunc(Rg1)) N
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wl9=w17+w18= Igg
w20 = min (Irs;, 13)

w21=ratio associated to w20=R§2

w22=trunc(d4/v4)
w23=approximate(d4/v4 -trunc(d4/v4))
w24=w22+w23=l,

w25=trunc(Rg))

w26=approximate( Rgs - trunc(Rg3) )
w27=w25+w26= IRSZ

w28=min(Igg2, I4)

w29=ratio associated to w28=Y

ratios <1
w30 if d1<20 and v1>90 then Y=R stop
else
w31 if d2<20 and v2>90 then Y=R) stop
else
w32=trunc(vi/d1)
w33=approximate(v1/d1-trunc(v1/d1))
w34=w32+w33=I;
w35=trunc(v2/d2)
w36=approximate(v2/d2-trunc(d2/v2)
w37=w35+w36=1,
w38 =max(I), 1)
w39 = ratio associated to w38 = Rg
w40  if d3<20 and v3>90 then Y=R3 stop
else
w4 l=trunc(v3/d3)
wd2=approximate( v3/d3 - trunc(v3/d3))
' wa3=w4l+wa2=I; 3
! wd4=trunc(1/Rg;) ool
' wd5=approximate( (1/Rgy) - trunc(1/Rg1)) ; ‘;:
f 2
' e
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else

stop

Output Vector Y=di/vi

F.3.2 Explanatory Notes

Vy
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w46=wi44+w45= Ipg1
w47 = max (Irsy, I3)
w48=ratio associated to w47=Rg)

if d4<20 and v3>90 then Y=R| stop

w50=trunc(v4/d4)

w5 1=approximate( v4/d4 - trunc(v4/d4) )
w52=w50+w51=]y

w53=trunc(1/Rg3)

w54=approximate( (1/Rgjp) - trunc(1/Rg3) )
wS55=w53+w54= IRSZ

w56=max(Irg2, I3)

w57=ratio associated to w56=Y

YE pT0 ath pTA ¥ wid p'h GVE a¥) ot e Wy

The different notation used in the previous algorithm may be described as follows:

(Only one variable of each type is described. The other variables defined by the same
notation are based on the same model.)

w12 = min(Iy, Ip). these variables may only take three values 0,1 or 2

0 if the two values are the same

1 if the first is smallest, I in this case

2 if the second is smallest, I in this case

w12, w20, w28 are the same type of internal variables

w38 = max(lj, I). these variables may only take three values 0,1 or 2

N N T e A e e T T N I T K ™ AN e T e A A AN A
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0 if the two values are the same
w38 = 1 if the first is largest, 11 in this case

2 if the second is largest, I3 in this case
w38,w47,w56 are the same type of internal variables

w13 = ratio associated to w12
w13 takes the value of the ratio corresponding to the value of w12.
If w12 had taken a value of 1, w13 would take the values of Ry, given that Rj is
smaller than R», such a ratio could be noted Rp".
If w12 takes a value of 0, each ratio (either R1 or R2) has a probability of 0.5 of
being chosen.

w13, w21, w29, w39,w48,w57 are the same type of internal variables.
w7 = approximate(d1/v1-trunc(d1/v1)

w7 may only take 3 values 0, 0.25 or 0.75.

0.00 if approximate(..) <0.25
wl6= 0.75 if approximate(..) >0.75

0.25 otherwise

w7, wl0, w15, w18, w23, w33, w36, wd2, w45, w48, w51, w54 are of the same type.
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F.4. ALGORITHM 4 (2eh ot
F.4.1 Definition of Variables 't
Input vector X et
X=(dl/v1, d2/v2, d3/v3, d4/v4) bk
Internal Variables i
wl=dl wS=vl
w2=d2 wb=v2 RO

w3=d3 wT7=v3 : q';,‘:};
wi=d4 w8=v4 ghter

w9 if d1<20 and v1>90 then Y=R; stop else - TREN
w10 if d2<20 and v2>90 then Y=R; stop else .

wll = min(d1,d2)
w12= max(vl,v2) yen o
w13 = corresp(wl11l,w12)

4
wld4=d1-v1+10 g:s}:‘,
wl5 =d2-v2 X ::‘.‘
w16=min(w14,w15) Ak
w17=d2-v2+10 WSk
w18=dl-vl ".3::‘:::
w19=min(w17,w18) .,t.‘s,::‘:
w20=distance of ratio associated to(w13,w16,w19)=d (Rg;) g* )
w21=distance of ratio associated to(w13,w16,w19)=v (Rg}) R

w22 if d3<20 and v3>90 then Y=R3 stop ey

else
w23= min(d (Rg),d3) - TGS
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w24 = max(v(Rg1),v3) ::3:2’
w25 = corresp( w23,w24) r
w26 =d Rs ) - v (Rgp) +10 &
w27=d4 - v4 ::;:;
: w28=min(w26,w27 ) e
w29 = d4-v4+10 re
; w30= d Rs1)- v (Rs1) &jg.
w31= min(w28, w29 ) S
: o
w32=distance associated to the ratio (w25,w28,w31) =d (Rgp) -'
: w33=distance associated to the ratio (w25,w28,w31) = v (Rg2) ;:",:'*';
.:*,:‘:e'
w34 if d4<20and v4>90 then Y=R, stop ~ s
~ else ‘5
N w35 = min (d(Rgp),d4) 5
f w36 = max(v(Rgp),v4) o
: : w37 = corresp (w53,w54) ‘2}‘
w38 = dRgy) - vRgp) +10 as
4 w39 = d4-v4 ’g‘::;:
: w40 = min(w38,w39) s
w4l = d(Rg)) - v(Rgp) ;‘.;,‘
' wd 2= d4 - v4+ 10 %
w43 = min(w41,w42) R
: wa4 = ratio associated to (w37,w40,w43) = Y = di/vi o
; R
' Output Vector Y "'
o
3 F.4.2 Explanatory Notes ;' %
, 8
. The different notation used in the previous algorithm may be described as follows: -2-%
Ej (Only one variable of each type is described. The other variables described using the same s!"::.
oy notation are based on the same model.) )
l, () ¢
.
; R
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1 if the first element (in this case d1) is the smallest
wll =min(dl, d2) =

2 if the second element (in this case d2) is the smallest

1 if the first element (in this case v1) is the largest
wil2 =max(vl, v2) =

e,

2 if the second element (in this case vd2) is the largest

l1if wiS=wl6=1
w13 = corresp (wl5,w16) ={ 2if wis5=wil6=2

0 otherwise

dl-vi+10 if wil3=0
wl4 =dl-vl +10=

nonexistent otherwise

d2-v2if wil3=0
wls5=d2-v2=

e

nonexistent otherwise

1 if wi13=0and wl4 <wl5
w16 = min (w14, wl5) = nonexitent if w13 <>0

0 otherwise

wl7=d2-v2+10 =
nonexistent otherwise

{ d2-v2+10 if wi3=0and wl6=0
{ d2-v2 if wi3=0and wl6=0

wil8=d2-v2 =
nonexistent otherwise
2 if wi13=0,w16=0, and w17 <wl18
w19 = min (w17, wi8) = 0if wi3=0 and w16 =0 and
(w17 >wl18 or w17 =wl18)
nonexistent otherwise
127
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Ryif wi3=1or wi6=1 e
w20 = ratio associated to (w13, w16, wi19)=1{ Rpif wi3=2o0r wl6=2 iy
RjorRy (p=05)if w19 =0 o
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F.5. ALGORITHM 5

F.5.1 Definition of Variables

Input vector X

X=(d1/v1, d2/v2, d3/v3, d4/v4)

Internal Variables

wl=dl wi=vl
w2=d2 wb=v2
w3=d3 w7=v3
wé=d4 w8=v4

if d1<20 and v1>90 then Y=Rj] stop else
if d2<20 and v2>90 then Y=Rj stop else

wll=min(d1,d2)
w12 = max(vl,v2)
w13 = corresp(wl1,w12)

wl4 =d1-d2

wls =vl-v2

w16 =min(w14,w15)

w17 = distance of ratio associated to (w13,w16) =d (Rg)
w18 = speed of ratio associated to (w13,w16) =v (Rg})

if d3<20 and v3>90 then Y=Rj3 stop else
w20= min(d (Rg;),d3)

w21 = max(v (Rg1),v3)
w22 = corresp( w20,w21)
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w23 =d (Rgy) -d3
w24 =v (Rg;) - v3
w25 = min(w23,w24 )

w26 = distance of ratio associated to (w36,w29) = d(Rg3)
w26 = speed of ratio associated to (w36,w29) = v(Rg)

w27 if d4<20 and v4>90 then Y=R4 stop else

w28 = min (d(Rg3),d4)
w29 = max(v(Rg2),v4)
w30 = corresp (w39,w40)

w31 =d(Rgp) - d4

w32 = v(Rgy) - v4
w33=min(w31,w32 )

wd49=ratio associated to(w30,w33) =Y

Output Vector Y
F.5.2 Explanatory Notes
The different notation used in the previous algorithm may be described as follows:

(Only one variable of each type is described. The other variables described using the same
notation are based on the same model.)

1 if the first element (in this case d1) is the smallest
w1l =min(dl, d2) =

2 if the second element (in this case d2) is the smallest

w12 =max(vl, v2) =

{ 1 if the first element (in this case v1) is the largest

2 if the second element (in this case v2) is the largest

SRR R

o'
w
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lif wll=wl2=1 i,
wl3 =corresp (wll, wl2)= | 2if wil=wl2=2 .

0 otherwise Wl

dl-d2 if wi3=0 iy
wld=dl-d2=

nonexistent otherwise .

[ 1 if wi3=0and wl4 <wl5 e

2 if wi3=0and wl4>wl5 D4
w16 = min (w14, wl5) = 1 '
nonexitent if w13 <>0 SR

. O otherwise ittt

Ryif wi3=1or wi6=1 ot
w17 = ratio associated to (w13, wi6) = Ryif wl3= 2orwl6=2 o

RiorR2 (p=0.5)if wi9=0
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F.6. ALGORITHM 6 I8
by
el
F.6.1 Definition of Variables ‘
¢
Input vector X %:a‘:
o
XV
X=(d1/v1, d2/v2, d3/v3, dd/v4) o
ettt
'Q:’;
Internal Variables y ';-:;
t‘:fa::f
wl=dl  w5=vl —
()
w2=d2  wé6=v2 h :::;:
w3=d3  wl=v3 EE;':E::?
wd=d4  w8=v4 "it’?
®
v,
w9 = trunc(d1/10) =d11 w13 =trunc(v1/10) = v11 et
w10 =trunc(d2/10) =d21 w14 =trunc(v2/10) = v21 R
&
wll =trunc(d3/10) =d31 w15 =trunc(v3/10) = v31 e
w12 =trunc(d4/10) = d41 w16 =trunc(v4/10) = v41 &
i
A
w17 if d1<20 and v1>90 then Y=R; stop else K<
wi8 if d2<20 and v2>90 then Y=R» stop else 0 :-.::
bl
w19 = min(d1,d2) N
w20 = max(v1,v2) R
w21 = corresp(w15,w16) o
:3{. ‘
q.(\ h
w22 =round [(d1 - d11)/10} t__,.
w23 = d11+w22 v
w24 = round [(v1 - v11)/10] -2 .
N
w25 = vil+w24 ;:
w26 = w22/w23 =T, hy '
w25 =round {(d2 - d21)/10] ]
w26 = d21+w26 .
)
N
e
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w33

w52

.

w27 =round [(v2 - v21)/10]
w28 = v21+ w27
w29 = w26/w28 =T

w30 = min(w26,w29)

w31=distance of the ratio associated to(w21,w30) =d (Rg;)
w32= distance of the ratio associated to(w21,w30) = v (Rg;)

if d3<20 and v3>90 then Y=Rj stop else

w34 = min(d(Rg;),d3)
w35 = max(v(Rg1),v3)
w36 = corresp( w34,w35)

w37 = trunc (d(Rg1)/10) =d1(Rg;)
w38 = round [( d(Rg;) - d1(Rg;) /10]
w39 = d1(Rg;) + w38

w40 = trunc ( v(Rg)/10 ) = vi(Rg;)
w41 = round [( v(Rg)) - vI(Rg) /10]
wd42 = vl(Rgy) + wél

w43 =w39/ w42 = TRSl

wd4 =round [ (d3 - d31)/ 10]

w45 = d31 + w27

w46 =round [ (v3 - v31)/ 10]

w47 = v31 + wd6

w48 = wa5/wa7 =Ty

w49 = min( Trg;, T3)

w30 = distance of ratio associated to(w36,w49) =d (Rg3)
w51 = distance of ratio associated to(w36,w49) =v (Rg7)

if d4<20 and v4>90 then Y=R4 stop else
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w33 = min(d(Rg2),d4)
w54 = max(v(Rg2),v4)
w55 = corresp (w47,w48)

w56 = trunc (d(Rg2)/10 ) = d1(Rgp)
w57 = round [( d(Rgp) - d1(Rg)) /10]
w38 = d1(Rg3) + w57

w39= trunc ( v(Rg2)/10 ) = vi(Rgp)
w60= round [( v(Rg») - V1(Rgp) /10]
w61 = v1(Rg3) + w60

w62 = w58 / w6l = Trgo

w63 =round [ (d4 - d41) / 10]

w64 = d41 + w63

w65 =round [ (v4 - v41) / 10]

w66 = v41 + w65

w67 = w64/w66 =T,

w68 = min( Trgs, Ty )

w69=ratio associated to(w55,w68) =Y
Output Vector Y
F.6.2 Explanatory Notes
The different notations used in the previous algorithm may be described as follows:

(Only one variable of each type is described. The other variables defined by the same
notation are based on the same model.)

1 if the first element (in this case d1) is the smallest
w19 = min(dl, d2) =

2 if the second element (in this case d2) is the smallest

1 if the first element (in this case v1) is the largest
w20 = max(vl, v2) =

2 if the second element (in this case v2) is the largest
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N lif wls5=wl6=1
:i w21 =corresp (w15, wl6) = | 2if wiS51=wl6=2

4:‘ 0 otherwise

f:: If w21 is not equal to 0, the variables w21 to w29 have a probability of 0 of
! occuring, that is they only exist in the case when w21 is equal to 0.

Rpif w2l=10r w30=1
w17 = distance of ratio associated to (w17, w28) = Ry if w2l = 20orw30=2

i dj ordp (p=0.5)if w21 =0 and
4 w30=0
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APPENDIX G o
ENTROPY OF THE VARIABLES OF THE ALGORITHMS T

The entropy of most variables described in Chapter VI was derived using computer e
simulations. In some cases however, the entropy of 'non-static variables' was estimated R
from that of other similar variables: The decrease in entropy after each stage was Y
approximated to that of a similar variable. For each algorithm the approximations were o
different.

G.1 ALGORITHM 1 Wi

For Algorithm 1, the decrease in entropy of the truncated speeds and distances were Wy
derived from the rate of decrease of the speeds and distances after each decision. The rate oMt
is noted 'Multiplyer' in Table G.1 NN

* The variables of Table G.1 have been defined in Appendix F. They are described Spotge
again for Algorithm 1, but will not be described later.

di: distance of ratio i o
vi: speed of ratio i

dsi: distance of ratio chosen as smallest at decision si-1, where si=2to 6
vsi: speed of ratio chosen as smallest at decision si-1 hehate
di1: first digit of the distance of ratio i akalh
vil: first digit of the speed of ratio i ate
trunc dsi: first digit of the distance of ratio chosen as smallest at decision si-1
trunc vsi: first digit of the speed of ratio chosen as smallest at decision si-1 KR
decision i: decision variable to choose the smallest of the two ratios at comparison i
RSi = trunc dsi / trunc vsi: Variable used to make comparison si

di <20 and vi > 90: Decision variable to check for very small ratios Vb

O RRR
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t, Table G.1 Algorithm 1
Trials of Trials of
Description Multiplyer  Frequency  Entropy Three Tasks Six tasks
of Variable
input 45.764 77.683
di d4or7 6.409 25.635 44.862
o vi 4or7 6.409 25.635 44.862
b dil dor7 3.165 12.661 22.156
. vil dor7 3.158 12.630 22.103
4 di<20 and vi>90 4or7 0.183 0.733 1.282
N dilyvil dor7 6.248 24.992 43.735
decision] 1.150 1.150 1.150
s')
‘ decision 2 1.082 1.082 1.082
ds2 6.229 6.229 6.229
0 vs2 6.244 6.244 6.244
N trunc ds2 1.029 3.076 3.076 3.076
: trunc vs2 1.026 3.077 3.077 3.077
X Rs2 5.654 5.654 5.654
3 ds3 6.056 6.056 6.056
. vs3 6.021 6.021 6.021
D decision3 1.004 1.004 1.004
trunc ds3 1.029 2.991 2.991 2.991
| trunc dv3 1.037 2.967 2.967 2.967
, Rs3 5.457 5.457 5.457
" ds4 5.924 5.924
n vs4 5.761 5.761
decision4 0.952 0.952
. trunc ds4 1.022 2.926 2.926
‘ trunc dv4 1.045 2.839 2.839
! Rs4 5.126 5.126
! ds5 5.821 5.821
vs5 5.604 5.604
. decision5 0.920 0.920
. trunc ds5 1.018 2.875 2.875
o trunc vs5 1.028 2.761 2.761
:.; Rs5 4.852 4.852
5 ds6 5.736 5.736
o vs6 5.422 5.422
; decision 6 0.902 0.902
p trunc ds6 1.015 2.833 2.833
) trunc vs6 1.034 2671 2.671
" Rs6 4.619 4.619
' Output 11.042 10.460
Y Total Entropy 210.103 386.700
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For Algorithm 2, the decrease in entropy of the rounded speeds and distances were (
derived from the rate of decrease of the speeds and distances after each decision. The rate :::;.j
¢
is noted 'Multiplyer' in Table G.2. The variables of Table G.2 are very similar to those of .ﬁ::?::;:
Table G.1, except that ‘round dsi' is used instead of 'trunc dsi'. Also round(di2/10) is the Q)
approximated value of the second digit wheu it is divided by 10. It can only take a value of ;o.:;»
Oorl. S:'.::i
W
A
Table G.2 Algorithm 2 .
Trials of Trials of o
Description Multiplyer Frequency  Entropy Three Tasks Six Tasks ,!.:}
of Variable ::.c‘
SO
45.764 77.683 5L
di 4or7 6.409 25.635 44.862 N
vi 4or7 6.409 25.635 44.862 <<
di<20 and vi>90 4or7 0.183 0.734 1.284 » 1
dil 4or7 3.165 12.661 22.156 b,
vil 4or7 3.158 12.630 22.103 Mot
round(di2/10) 4or7 0.993 3.973 6.952 o
round(vi2/10 4or7 0.993 3.973 6.952 o
round di 4or7 3.239 12.956 22.673 X
round vi 4or7 3.249 12.996 22.742 !;«;:;.
rou(di)/rou(vi) 4or7 6.428 25.711 44,994 :,j,:j
decision1 1.145 1.145 1.145 plat!
®
di 6.169 6.169 6.169 ot
vi 6.316 6.316 6.316 o
di2 3.047 3.047 3.047 i
vi2 3.112 3.112 3.112 e
round(di2/10) 0.956 0.956 0.956 (
round(vi2/10 0.979 0.979 0.979 o
round ds2 1.039 3.127 3.127 3.127 ';3:
round vs2 1.015 3.202 3.202 3.202 o)
Rs2 6.050 6.050 6.050 e
decision 2 1.076 1.076 1.076 _ ':}s
it
di 5.996 5.996 5.996 9
vi 6.167 6.167 6.167 g
di3 2.962 2.962 2.962 s
vi3 3.039 3.039 3.039 - 'c.:{
round(di3/10) 0.929 0.929 0.929 <
round(vi3/10 0.956 0.956 0.956 pr
round ds3 1.029 3.040 3.040 3.040 L
.:I::::
o.é:e::
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Table G.2. (Continued) :“:N’:"?
RO
. . Y
Descripti i Trials of Trials of - R
o \S;:ar;i;;%%n Multiplyer  Frequency  Entropy Three Tasks Six Tasks 9 ,
7o)
’|.|.l.a
round vs3 1.024 3.126 3.126 3.126 o
sion3 (s).ggg (5)832 5.933 o
. . 0.995 NN
di —

1 5.870 5.870 1“‘;.- .
dia 6.020 6.020 R
vid A 2.899 o,
round(di4/10) 0-910 2.966 ;‘:‘,;.}
round(vi4/10 0.933 0.910 ot e
round dv4 1.024 3.052 976 alips
Rs4 5.812 3.052 5.\‘”":{
decision4 0.940 (5) 3‘11(2) N‘::::f

* . '|'.."‘
di !h.!h

: 5.773 o
dis 5883 5883 o
vis 2.851 2.851 o

: 2.899 2.899 e
round(di5/10) 0.895 ' !
round(vi5/10 0912 0.895 R
round ds5 1.017 2026 0.912 it

S . . ) ..| 4

sl 5.347 b
deci 5.347 e

sionS 0.905 0.905 o
di SO
222 202
31}2 %g :};g 2.814 R
round(di6/10) 0.883 2.836 ‘g:,:::
round(vie/10 0.892 0552 S
round ds6 1.013 2.889 0.892 g
round vs6 1.022 2.918 2018 e

s . :

;o 5.151 T
decision 6 0.85534 (5”1;3‘1‘ :;.'t 4
. 1 5 "
NN
Output 11.042 8.394 o
L'
Total Entropy 262.031 480.059 e
) '.|':||
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G.3 ALGORITHM 3 | ,‘.g":

. W,

Algorithm 3 considers the ratios less than one and the ratios larger than one ,“.

(RN

separately. The multipliers were only required for the ratios larger than one. (Many of the :i::::g;

US

variables have already been defined for Table G.1 in section G.1.1.) The following ",:'.l"::’.j

L

variables still need to be defined: R

integer = trunc(di/vi) ’ vy

round leftover = round [di/vi - trunc(di/vi) 3 ..:'.;

)

ratio RS1 = integer + round, the value used to make the comparison ::‘

r b

Table G.3 Algorithm 3 NN

Trials of Trials of 'z::‘”;if

Description Multiplyer Frequency  Entropy Three Tasks Six Tasks G

of Variable o0

Input 45.764 77.683 .

divi 4or7 12.393 49.570 86.748 W ,52

di 4or7 6.409 25.635 44.862 DAY

. vi dor7 6400 25.635 44.862 i

A

Ratios >1 0.471 0.520 0.991 0.991 -

w00

integer 4or7 1968 7.873 13.777 4

round leftover 4or7 1.357 5.430 9.502 ,o..;::.

ratio RS1 4or7 2.264 9.054 15.845 ':::..:,‘

decisionl 1.491 1.491 1.491 IR

di/vi 10.955 10.955 10.955 L

round left over 1.291 1.291 1.291 b

integer 1.087 1.087 1.087 g

ratio RS2 1.215 1.215 1.215 R

decision2 1.494 1.494 1.494 tetk
[ ]

difvi 10.427 10.427 10.427 RN

round left over 1.248 1.248 1.248 ARy

integer 0.736 0.736 0.736 l‘:q; ‘

ratio RS3 1.712 1.712 1.712 L

decision3 1.491 1.491 1.491 N
4

divi 10.173 10.173 povy
round left over 1.210 1.210 }"3\.

integer 0.599 0.599 NGO

ratio RS4 1.444 1.444 ooge

decisiond 1.487 1.487 Ph'
@

s
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Table G.3 (Continued)

Trials of Tials of
Description Multiplyer  Frequency  Entropy Three Tasks Six Tasks
of Variable
difvi 9.948 9.948
round left over 1.167 1.167
integer 0.552 0.552
ratio RS5 1.285 1.285
decision3 1.459 1.459
difvi 9.763 9.763
round left over 1.115 1.115
integer 0.539 0.539
ratio RS6 1.173 1.173
decision6 1.409 1.409
Ratios<1
di<20 and vi>90 0.139 0.558 0.976
trunc(vl/dl) 4or7 1.647 6.587 11.528
appr. left. trunc 4or7 1.357 5.430 9.502
trunc(vi/di)+app 4or7 2.264 9.054 15.845
decisionl 1.484 1.484 1.484
difvi 10.747 10.747 10.747
round left over 0915 1.484 1.484 1.484
integer 2.281 2.281 2.281
ratio RS2 0.634 3.571 3.571 3.571
decision2 1.301 1.301 1.301
difvi 10.280 10.280 10.280
round left over 1.017 1.459 1.459 1.459
integer 2.405 2.405 2.405
ratio RS3 0.984 3.631 3.631 3.631
decision3 1.169 1.169 1.169
di/vi ‘ 9.968 9.968
round left over 0.999 1.460 1.460
integer 2.421 2.421
ratio RS4 1.003 3.619 3.619
decision4 1.094 1.094
difvi 9.730 9.730
round left over 1.004 1.454 1.454
integer 2.409 2.409
ratio RS5 1.009 3.586 3.586
decision5 1.050 1.050
dimvi 9.534 9.534
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Table G.3 (Continued)
Trials of Trials of
Deseription Multiplyer  Frequency  Entropy Three Tasks Six Tasks
of Variable

round left over 1.005 1.446 1.446
integer 2.389 2.389
ratio RS6 1.010 3.551 3.551
decision6 1.024 1.024

Output 11.042 10.460
Total 275.582 513.594
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G.4 ALGORITHM 4

The change in entropy after each comparison has been set to be the same as for
Algorithm 35, since the two algorithms are very similar.

Table G.4. Algorithm 4

Trials of Trials of
Description Multiplyer  Frequency  Entropy Three Tasks Six Tasks
of Variable
input 45.764 77.683
di 4or7 6.409 25.635 44.862
vi 4or7 6.409 25.635 44.862
di<20,vi>90 4or7 0.139 0.558 0.976
Decision 1
min(d1,d2) 3or6 1.000 1.000
max(vl,v2) 3or6 1.000 1.000
corr used al5 1.220 1.220
di-vi+10 4or7 6911 6911
di-vi 6.886 6.886
minl 0.988 0.988
di-vi+10 6.537 6.537
di-vi 6.829 6.829
min2 0.881 0.881
Decision2
di 6.321 6.321 6.321
vi 6.321 6.321 6.321
m:in(d(Rs1),d3) 0.925 0.925 0.925
max(v(RS1),v3) 0.925 0.925 0.925
corr 1.128 1.128 1.128
di-vi+10 used al5 7.007 7.007 7.007
di-vi 6.791 6.791 6.791
minl 0914 0914 0914
di-vi+10 6.447 6.447 6.447
di-vi 6.735 6.735 6.735
min2 0.815 0.815 0.815
Decision3
di 6.073 6.073 6.073
vi 6.073 6.073 6.073
min(d(Rs2) ,d4) 0.833 0.833 0.833
max(v(RS1),v4) 0.833 0.833 0.833
corr 1.016 1.016 1.016
di-vi+10 6.733 6.733 6.733
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Table G.4 (Continued) e
Trials of Trials of G,
Description Multiplyer  Frequency  Entropy Three Tasks Six Tasks )
of Variable 4
)
di-vi 6.525 6.525 6.525 R
min] 0.823 0.823 0.823 bt
di-vi+10 6.358 6.358 6.358 ot
di-vi 6.643 6.643 6.643 e
min2 0.734 0.734 0.734 ".ﬁi\.‘;
it
Decision 4 :'.:.ﬁ:
di 5.875 5.875 gy
vi 5.875 5.875 Nt
min(d(Rs3) ,d5) 0.761 0.761
max(v(Rs3),v5) 0.761 0.761 TR
corr 0.929 0.929 A
di-vi+10 6.513 6.513 U0
di-vi (6).31% 6.312 i
min1 75 0.752 MY
di-vi+10 6.150 6.150
di-vi 6.425 6.425 o
min2 0.671 0.671 ':.:;,5:
O
! Decision e
i 5.710 5.710 Q" I'g;
vi 5710 5.710 r
min(d(Rs4),d6) 0.709 0.709 ey
max(v(Rs4),v6) 0.709 0.709 o @3;
corr 0.864 0.864 "c}Sc,-,{
di-vi+10 6.331 6.331 %g:
di-vi 6.135 6.135 Gy
min] 0.700 0.700 ®
di-vi+10 5978 5.978 itk
di-vi 6.246 6.246 i
min2 0.624 0.624 ﬁ:::f
Decision 6 ':::::i
%)
di 5.573 5.573 R
vi 5.573 5.573
min(d(Rs5) ,d7) 0.670 0.670
max(v(Rs5),v7) 0.670 0.670
corr 0.817 0.817
di-vi+10 6.178 6.178
di-vi 5.987 5.987
min1 0.661 0.661
di-vi+10 5.834 5.834
di-vi 6.095 6.095
min2 0.590 0.590
. Output entropy 11.042 10.460
Total entropy 227.858 417.450
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G.5 ALGORITHM 5 E’é
24
The ratc ¢ change of entropy of the variables of algorithm 5 were assumed to be ’ 5‘: :
the same as wht of the the decision variable. The variables were described in Appendix F. .'I
o
'::g:?
Mt .:
Table G.5. Algorithm 5 MR
Trials of Trials of 0
Description Multiplyer  Frequency  Entropy Three Tasks Six Tasks ‘:!.::f
of Variable ot
'0"‘0
input 45.764 77.683 st
di dor7 6.409 25.635 44.862 S
vi 4or7 6.409 25.635 44.862 o
di<20,vi>90 4or7 0.087 0.347 0.607 ‘.‘,i::;"
o)
min(d1,d2) decrease 1.000 1.000 1.000 R
max(vl,v2) same as the 1.000 1.000 1.000 DO
CORR decisions 1 1.228 1.228 1.228 —
di-vi 6.975 6.975 6.975 5
decl 1.100 1.100 1.100 "s',:‘;;;
OO
de2 1.081 1.018 1.018 1.018 oo
di 6.321 6.321 6.321 ¢
vi 6.321 6.321 6.321 _
di-vi 1.014 6.879 6.879 6.879 o
min(d1,d2) 0.925 0.925 0.925 )
max(v1,v2) 0.925 0.925 0.925 Wiy,
CORR 1.136 1.136 1.136 :":"::t
M)
de3 1.111 0.916 0.916 0.916 an
di 6.073 6.073 6.073 0
vi 6.073 6.073 6.073 )
di-vi 1.041 6.610 6.610 6.610 "ﬁ:'
min(d1,d2) 0.833 0.833 0.833 O
max(v1,v2) 0.833 0.833 0.833
CORR 1.023 1.023 1.023 e
x)
ded 1.094 0.838 0.838 3,;
di 5.875 5.875 )
vi 5.875 5.875 s
di-vi 1.034 6.394 6.394 i
min(d1,d2) 0.761 0.761 2
max(v1,v2) 0.761 0.761 Loy
CORR 0.935 0.935 A
0.000 A
de5 1.075 0.780 0.780 o
di 5.710 5.710 -~
vi 5.710 5.710
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s Table G.5 (Continued) | i
' Trials of Tn'%ls ?(f “‘
o Description Multiplyer ~ Frequency Entropy Three Tasks Six Tasks :::::;
; of Vaniable ;,-::5"
!’ |' s
: di-vi 1.029 6.215 g.g,(l)g o
min(d1,d2) 0.709 ) s
max(v1,v2) 0.709 0.709 2
s CORR 0.870 8'%(7) B
X : S
; 5 108 053 5.573 Bie
; . b
R 4 5573 5.573 ol
& 065 6.065 A
h di-vi 1.025 6. 6063 ‘
min(d1,d2) 0.670 . oo
K] max(vl”v2) 0.670 83’;(?)’ ;‘.:’ X
{ CORR 0.823 : i
R Output 11.042 10.460 0
k)
1 297.915 ®
¥ Total Entropy 165.615 ‘;"‘3“(‘
:
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G.6 ALGORITHM 6
e
The rate at which the entropy changes after each decision for the non-static variables RS 'y
of algorithm 6 is derived from algorithm 5 and algorithm 2, since this algorithm (6) is a "..:2:::
ol
combination of both. ?:ﬁ:-'{
G
Table G.6 Algorithm 6 o
phtitehs
Trials of Trials of 2
Description Multiplyer  Frequency  Entropy Three Tasks Six Tasks A '::;_
of Variable h e‘:o‘,:,
input 45.764 77.683 o
di dor7 6.409 25.635 44.862 ! G
vi 4or7 6.409 25.635 44.862 W
di<20 and vi>90 dor7 0.087 0.347 0.607 shani
dil 4or7 3.165 13.168 23.045 pia
vil 4or7 3.158 12.672 22.176 it
min(d1,d2) 1.000 1.000 1.000 -
max(vl,v2) 1.000 1.000 1.000 A
CORR 0.549 0.549 0.549 R
round(di2/10) 0.994 3.974 6.955 Rt
round(vi2/10 0.994 3.974 6.955 Jane
round di 3.238 12.950 22.663 KA
round vi 3.243 12971 22.699 . 2
Rsl 6.424 25.695 44.966 S
. decl 1.238 1.238 1.238 "? N
h
di 6.169 6.169 6.169 2
vi 6.316 6.316 6.316 o
dil 3.047 3.047 3.047 ..
vil 3.112 3.112 3.112 N
min(ds2,di) 0.927 0.927 0.927 &3 3
max(vs2,vi) 0.927 0.927 0.927 udl
CORR 0.508 0.508 0.508 Bl
round(di2/10) 0.956 0.956 0.956 T
round(vi2/10 0.979 0.979 0.979 -
round ds2 3.116 3.116 3.116 N
round vs2 3.196 3.196 3.196 s
RS2 6.046 6.046 6.046 N
dec2 1.079 1.148 1.148 1.148 Al
di 5.996 5.996 5.996 s
vi 6.167 6.167 6.167 R
dil 2.962 2.962 2.962 N
vil 3.039 3.039 3.039 o
min(ds3,di) 0.830 0.830 0.830 M
max(vs3,vi) 0.830 0.830 0.830 ' Lyt
CORR 0.455 0.455 0.455 .
e
\.I'.’C'
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Description
of Variable

round(di2/10)
round(vi2/10
round ds3
round vs3
Rs3

dec3

di

vi

dil

vil
min(dsd4,di)
max(vs4,vi)
CORR
round(di2/10)
round(vi2/10
round ds4
round vs4
Rs4
decision4

di

vi

dil

vil
min(ds5,di)
max(vs5,vi)
CORR
round(di2/10)
round(vi2/10
round ds5
round vs5

Rs5
decisions

di

vi

dl

vl
min(ds6,di)
max(vs6,vi)
CORR

round(di2/10)
round(vi2/10

STl
Rt

'l
':'I
¥
[ ]
TAEN
Table G.6 (Continucd) e
"
Trials of Trials of A
Multiplyer ~ Frequency  Entropy  Three Tasks Six Tasks ‘: ,
NS
v
1
0.930 0.930 0.930 ]
0.956 0.956 0.956 el
3,029 3,029 3.029 X
3.120 3.120 3.120 o
5.592 5.592 5.592 A
1.117 1.028 1.028 1.028 NN
oA
5.870 5.870 L)
6.020 6.020 ey
2.899 2.899 Y
2.966 2.966 P
0.804 0.804 R
0.804 0.804 o
0.441 0.441 .9
0.936 0.936 o
0.933 0.933 A
2.965 2.965 iyl
3.046 3.046 o,
5.478 5.478 Sy
1.033 0.995 0.995
AL
5773 5.773 ;;: W
5.883 5.883 N
2.851 2.851 e
2.899 2.899 NN
0.731 0.731
0.731 0.731 k!
0.401 0.401 s
0.920 0.920 okl
0912 0.912 R
2.916 2.916 it
2.977 2.977 .o
5.040 5.040
1.100 0.905 0.905 §§
5.698 5.698 i
5.757 5.757 DY
2.814 2.814 °_
2.836 2.836 A
0.714 0.714 R,
0.714 0.714 o
0.392 0.392 RGN
0.909 0.909
0.892 0.892
148
R i A




"t % K8 U T 8 a8 Bk Vgl gl Al Of Sal L S d g VA el ab sV R e Rre®

Table G.6 (Continued)

Trials of Trials of
Description Multiplyer  Frequency  Entropy Three Tasks Six Tasks
of Variable

round ds6 2.879 2.879
round vs6 2913 .
RS6 4932

decision6 0.884

Output 11.042
Total Entropy 268.995 502.530
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